Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
150.1-b12 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$4$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.335468070$ |
3.286902394 |
\( \frac{8889588234944170142939}{7031250} a + \frac{1209719733278025672168}{390625} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 5606 a - 13776\) , \( 395577 a - 969132\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(5606a-13776\right){x}+395577a-969132$ |
150.1-e12 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$2.508372848$ |
$5.617778566$ |
1.917607978 |
\( \frac{8889588234944170142939}{7031250} a + \frac{1209719733278025672168}{390625} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -885 a - 2449\) , \( 24162 a + 61154\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-885a-2449\right){x}+24162a+61154$ |
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.