Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
150.1-b8 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{30} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$4$ |
\( 2^{4} \cdot 3^{3} \) |
$1$ |
$0.335468070$ |
3.286902394 |
\( \frac{26673883482189453500771}{715255737304687500} a + \frac{5545867307448315927528}{59604644775390625} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -35919 a + 87939\) , \( -803878 a + 1968921\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-35919a+87939\right){x}-803878a+1968921$ |
150.1-e8 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{30} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \) |
$7.525118545$ |
$0.624197618$ |
1.917607978 |
\( \frac{26673883482189453500771}{715255737304687500} a + \frac{5545867307448315927528}{59604644775390625} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1310 a - 1414\) , \( 25288 a + 58064\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-1310a-1414\right){x}+25288a+58064$ |
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.