Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
24.1-a1 24.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.683508517$ 1.160141318 \( \frac{207646}{6561} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 1\) , \( 21\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+{x}+21$
24.1-b1 24.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.079273864$ $2.325279868$ 1.024545539 \( \frac{207646}{6561} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -78 a + 194\) , \( 4376 a - 10718\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-78a+194\right){x}+4376a-10718$
48.1-a1 48.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.325279868$ 1.898583062 \( \frac{207646}{6561} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 6\) , \( -18\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+6{x}-18$
48.1-b1 48.1-b \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $5.683508517$ 1.160141318 \( \frac{207646}{6561} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -80 a + 193\) , \( -4455 a + 10911\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-80a+193\right){x}-4455a+10911$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.