Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
150.1-b11 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{6} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
0 |
$\Z/12\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3^{3} \) |
$1$ |
$5.367489134$ |
3.286902394 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -106671 a - 261341\) , \( 29666144 a + 72667017\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-106671a-261341\right){x}+29666144a+72667017$ |
150.1-e11 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{6} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{4} \) |
$3.762559272$ |
$0.312098809$ |
1.917607978 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -5334\) , \( -150368\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-5334{x}-150368$ |
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.