Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
288.1-a1 288.1-a \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.872279978$ 1.580851681 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -3\) , \( 9 a\bigr] \) ${y}^2={x}^{3}-a{x}^{2}-3{x}+9a$
288.1-c1 288.1-c \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.872279978$ 1.580851681 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -3\) , \( -9 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}-3{x}-9a$
288.1-d1 288.1-d \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.456980086$ $3.872279978$ 2.889670952 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -100 a - 243\) , \( 3583 a + 8776\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-100a-243\right){x}+3583a+8776$
288.1-f1 288.1-f \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.456980086$ $3.872279978$ 2.889670952 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -100 a - 243\) , \( -3583 a - 8776\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-100a-243\right){x}-3583a-8776$
768.1-h1 768.1-h \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.706985663$ 1.369057715 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a - 6\) , \( -24 a - 60\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-6\right){x}-24a-60$
768.1-i1 768.1-i \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.394078358$ $6.706985663$ 4.316128133 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4 a - 6\) , \( -24 a + 60\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4a-6\right){x}-24a+60$
768.1-k1 768.1-k \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.706985663$ 1.369057715 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a - 6\) , \( 24 a - 60\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-6\right){x}+24a-60$
768.1-n1 768.1-n \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.394078358$ $6.706985663$ 4.316128133 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a - 6\) , \( 24 a + 60\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-6\right){x}+24a+60$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.