Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
150.1-b2 150.1-b \(\Q(\sqrt{6}) \) \( 2 \cdot 3 \cdot 5^{2} \) 0 $\Z/12\Z$ $\mathrm{SU}(2)$ $1$ $5.367489134$ 3.286902394 \( -\frac{273359449}{1536000} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 271 a - 661\) , \( -12352 a + 30257\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(271a-661\right){x}-12352a+30257$
150.1-e2 150.1-e \(\Q(\sqrt{6}) \) \( 2 \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.762559272$ $1.248395236$ 1.917607978 \( -\frac{273359449}{1536000} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -14\) , \( -64\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-14{x}-64$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.