| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 49.1-a3 |
49.1-a |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
49.1 |
\( 7^{2} \) |
\( 7^{8} \) |
$1.08342$ |
$(-a-3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7Cs.1.2 |
$1$ |
\( 1 \) |
$1$ |
$7.676076964$ |
1.675057320 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 281 a - 1608\) , \( -5819 a + 26465\bigr] \) |
${y}^2+{y}={x}^3+\left(-a-1\right){x}^2+\left(281a-1608\right){x}-5819a+26465$ |
| 49.1-a4 |
49.1-a |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
49.1 |
\( 7^{2} \) |
\( 7^{8} \) |
$1.08342$ |
$(-a-3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7Cs.1.2 |
$49$ |
\( 1 \) |
$1$ |
$0.156654631$ |
1.675057320 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( -4129 a - 7488\) , \( -225461 a - 404182\bigr] \) |
${y}^2+{y}={x}^3+\left(a+1\right){x}^2+\left(-4129a-7488\right){x}-225461a-404182$ |
| 441.1-d3 |
441.1-d |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
441.1 |
\( 3^{2} \cdot 7^{2} \) |
\( 3^{6} \cdot 7^{8} \) |
$1.87654$ |
$(a+1), (-a-3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3, 7$ |
3B.1.1, 7Cs.6.2 |
$1$ |
\( 2 \cdot 3 \) |
$6.259930461$ |
$1.096582423$ |
1.997284256 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -2310 a - 5460\) , \( 113190 a + 184203\bigr] \) |
${y}^2+{y}={x}^3+\left(-2310a-5460\right){x}+113190a+184203$ |
| 441.1-d4 |
441.1-d |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
441.1 |
\( 3^{2} \cdot 7^{2} \) |
\( 3^{6} \cdot 7^{8} \) |
$1.87654$ |
$(a+1), (-a-3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3, 7$ |
3B.1.1, 7Cs.6.2 |
$1$ |
\( 2 \cdot 3 \) |
$2.086643487$ |
$0.365527474$ |
1.997284256 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 6510 a - 18690\) , \( -446292 a + 1241182\bigr] \) |
${y}^2+{y}={x}^3+\left(6510a-18690\right){x}-446292a+1241182$ |
| 1225.2-c3 |
1225.2-c |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
1225.2 |
\( 5^{2} \cdot 7^{2} \) |
\( 5^{6} \cdot 7^{2} \) |
$2.42260$ |
$(a), (-a-3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7Cs.6.2 |
$1$ |
\( 2 \) |
$3.279019542$ |
$0.749108406$ |
2.144070295 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( -919 a - 1848\) , \( -26136 a - 45656\bigr] \) |
${y}^2+{y}={x}^3+\left(a+1\right){x}^2+\left(-919a-1848\right){x}-26136a-45656$ |
| 1225.2-c4 |
1225.2-c |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
1225.2 |
\( 5^{2} \cdot 7^{2} \) |
\( 5^{6} \cdot 7^{2} \) |
$2.42260$ |
$(a), (-a-3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7Cs.6.2 |
$1$ |
\( 2 \) |
$1.093006514$ |
$2.247325220$ |
2.144070295 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 971 a - 2898\) , \( 27140 a - 74487\bigr] \) |
${y}^2+{y}={x}^3+\left(-a-1\right){x}^2+\left(971a-2898\right){x}+27140a-74487$ |
| 1225.3-c3 |
1225.3-c |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
1225.3 |
\( 5^{2} \cdot 7^{2} \) |
\( 5^{6} \cdot 7^{2} \) |
$2.42260$ |
$(-a+1), (-a-3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7Cs.6.2 |
$1$ |
\( 2 \) |
$1.093006514$ |
$2.247325220$ |
2.144070295 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( 2441 a - 6888\) , \( 100022 a - 279017\bigr] \) |
${y}^2+{y}={x}^3+\left(a+1\right){x}^2+\left(2441a-6888\right){x}+100022a-279017$ |
| 1225.3-c4 |
1225.3-c |
$6$ |
$147$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
1225.3 |
\( 5^{2} \cdot 7^{2} \) |
\( 5^{6} \cdot 7^{2} \) |
$2.42260$ |
$(-a+1), (-a-3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-147$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7Cs.6.2 |
$1$ |
\( 2 \) |
$3.279019542$ |
$0.749108406$ |
2.144070295 |
\( -7604567359488000 a - 13621969096704000 \) |
\( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -289 a - 1008\) , \( -6904 a - 8304\bigr] \) |
${y}^2+{y}={x}^3+\left(-a-1\right){x}^2+\left(-289a-1008\right){x}-6904a-8304$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.