Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
64.4-a1 |
64.4-a |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.4 |
\( 2^{6} \) |
\( 2^{13} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$7.156385278$ |
0.867839188 |
\( \frac{217}{16} a - \frac{139}{4} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 0\) , \( -2 a - 4\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}-2a-4$ |
64.4-b1 |
64.4-b |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.4 |
\( 2^{6} \) |
\( 2^{13} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$14.01972920$ |
1.700141892 |
\( \frac{217}{16} a - \frac{139}{4} \) |
\( \bigl[a\) , \( -a\) , \( a\) , \( -3\) , \( -3 a + 6\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}-3{x}-3a+6$ |
128.6-a1 |
128.6-a |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
128.6 |
\( 2^{7} \) |
\( 2^{19} \) |
$1.23927$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$8.823675287$ |
2.140055600 |
\( \frac{217}{16} a - \frac{139}{4} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( a\) , \( a\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+a{x}+a$ |
128.6-d1 |
128.6-d |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
128.6 |
\( 2^{7} \) |
\( 2^{19} \) |
$1.23927$ |
$(-a+2), (-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.081969010$ |
$17.28603663$ |
1.374613658 |
\( \frac{217}{16} a - \frac{139}{4} \) |
\( \bigl[a\) , \( -a\) , \( 0\) , \( -a\) , \( 197 a + 308\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-a{x}^{2}-a{x}+197a+308$ |
512.1-e1 |
512.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
512.1 |
\( 2^{9} \) |
\( 2^{25} \) |
$1.75259$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$6.239280630$ |
1.513247827 |
\( \frac{217}{16} a - \frac{139}{4} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 0\) , \( 8 a + 12\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+8a+12$ |
512.1-f1 |
512.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
512.1 |
\( 2^{9} \) |
\( 2^{25} \) |
$1.75259$ |
$(-a+2), (-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.235830817$ |
$12.22307372$ |
2.796510914 |
\( \frac{217}{16} a - \frac{139}{4} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 5 a - 12\) , \( -50 a + 128\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a-12\right){x}-50a+128$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.