Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
4.1-a1 |
4.1-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( 2^{27} \) |
$0.52105$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$2.551261986$ |
0.309385960 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -9 a + 22\) , \( 106 a - 272\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-9a+22\right){x}+106a-272$ |
32.3-a1 |
32.3-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.3 |
\( 2^{5} \) |
\( 2^{39} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \cdot 3 \) |
$1$ |
$3.885783100$ |
1.413661249 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -60 a + 146\) , \( 1782 a - 4567\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-60a+146\right){x}+1782a-4567$ |
32.4-a1 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{39} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$1.942891550$ |
1.413661249 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -23 a + 52\) , \( -405 a + 1032\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-23a+52\right){x}-405a+1032$ |
128.5-b1 |
128.5-b |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
128.5 |
\( 2^{7} \) |
\( 2^{45} \) |
$1.23927$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$4.184918978$ |
1.014991940 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -23 a + 42\) , \( -329 a + 864\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-23a+42\right){x}-329a+864$ |
128.5-c1 |
128.5-c |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
128.5 |
\( 2^{7} \) |
\( 2^{45} \) |
$1.23927$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \cdot 3 \) |
$1$ |
$1.373831790$ |
1.999218911 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -285 a - 443\) , \( -4041 a - 6307\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-285a-443\right){x}-4041a-6307$ |
128.6-b1 |
128.6-b |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
128.6 |
\( 2^{7} \) |
\( 2^{45} \) |
$1.23927$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$4.184918978$ |
1.014991940 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -274 a + 703\) , \( -18518 a + 47435\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-274a+703\right){x}-18518a+47435$ |
128.6-c1 |
128.6-c |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
128.6 |
\( 2^{7} \) |
\( 2^{45} \) |
$1.23927$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$2.747663580$ |
1.999218911 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -24 a - 17\) , \( 98 a + 31\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-24a-17\right){x}+98a+31$ |
256.1-b1 |
256.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
256.1 |
\( 2^{8} \) |
\( 2^{51} \) |
$1.47375$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.959184588$ |
1.435415367 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -144 a + 360\) , \( -6784 a + 17392\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-144a+360\right){x}-6784a+17392$ |
324.1-e1 |
324.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
324.1 |
\( 2^{2} \cdot 3^{4} \) |
\( 2^{27} \cdot 3^{12} \) |
$1.56315$ |
$(-a+2), (-a-1), (3)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$1$ |
$3.945579451$ |
3.827774313 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -81 a + 202\) , \( -2862 a + 7337\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-81a+202\right){x}-2862a+7337$ |
676.4-i1 |
676.4-i |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
676.4 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{27} \cdot 13^{6} \) |
$1.87867$ |
$(-a+2), (-a-1), (-2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.659885177$ |
$3.282920544$ |
3.152503187 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -47 a - 50\) , \( 189 a + 504\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-47a-50\right){x}+189a+504$ |
676.5-i1 |
676.5-i |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
676.5 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{27} \cdot 13^{6} \) |
$1.87867$ |
$(-a+2), (-a-1), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \cdot 3 \) |
$0.082485647$ |
$3.282920544$ |
3.152503187 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -346 a - 537\) , \( 5168 a + 8079\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-346a-537\right){x}+5168a+8079$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.