Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
64.5-a1
64.5-a
$4$
$4$
\(\Q(\sqrt{17}) \)
$2$
$[2, 0]$
64.5
\( 2^{6} \)
\( 2^{13} \)
$1.04210$
$(-a+2), (-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2 \)
$1$
$7.156385278$
0.867839188
\( -\frac{217}{16} a - \frac{339}{16} \)
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( a + 2\) , \( 3 a - 4\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(a+2\right){x}+3a-4$
64.5-b1
64.5-b
$4$
$4$
\(\Q(\sqrt{17}) \)
$2$
$[2, 0]$
64.5
\( 2^{6} \)
\( 2^{13} \)
$1.04210$
$(-a+2), (-a-1)$
0
$\Z/4\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{3} \)
$1$
$14.01972920$
1.700141892
\( -\frac{217}{16} a - \frac{339}{16} \)
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -2 a - 3\) , \( 2 a + 3\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-2a-3\right){x}+2a+3$
128.5-a1
128.5-a
$4$
$4$
\(\Q(\sqrt{17}) \)
$2$
$[2, 0]$
128.5
\( 2^{7} \)
\( 2^{19} \)
$1.23927$
$(-a+2), (-a-1)$
0
$\Z/4\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{4} \)
$1$
$8.823675287$
2.140055600
\( -\frac{217}{16} a - \frac{339}{16} \)
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 2 a + 3\) , \( a + 3\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2a+3\right){x}+a+3$
128.5-d1
128.5-d
$4$
$4$
\(\Q(\sqrt{17}) \)
$2$
$[2, 0]$
128.5
\( 2^{7} \)
\( 2^{19} \)
$1.23927$
$(-a+2), (-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{3} \)
$0.081969010$
$17.28603663$
1.374613658
\( -\frac{217}{16} a - \frac{339}{16} \)
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( a - 1\) , \( -197 a + 505\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(a-1\right){x}-197a+505$
512.2-e1
512.2-e
$4$
$4$
\(\Q(\sqrt{17}) \)
$2$
$[2, 0]$
512.2
\( 2^{9} \)
\( 2^{25} \)
$1.75259$
$(-a+2), (-a-1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{2} \)
$1$
$6.239280630$
1.513247827
\( -\frac{217}{16} a - \frac{339}{16} \)
\( \bigl[0\) , \( 1\) , \( 0\) , \( 0\) , \( -8 a + 20\bigr] \)
${y}^2={x}^{3}+{x}^{2}-8a+20$
512.2-f1
512.2-f
$4$
$4$
\(\Q(\sqrt{17}) \)
$2$
$[2, 0]$
512.2
\( 2^{9} \)
\( 2^{25} \)
$1.75259$
$(-a+2), (-a-1)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{3} \)
$0.235830817$
$12.22307372$
2.796510914
\( -\frac{217}{16} a - \frac{339}{16} \)
\( \bigl[0\) , \( a\) , \( 0\) , \( -5 a - 7\) , \( 50 a + 78\bigr] \)
${y}^2={x}^{3}+a{x}^{2}+\left(-5a-7\right){x}+50a+78$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.