Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
4.1-a4 4.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $28.55651349$ 0.316806072 \( \frac{461373}{2} a - 531398 \) \( \bigl[1\) , \( 1\) , \( a\) , \( a - 3\) , \( -a + 1\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(a-3\right){x}-a+1$
36.2-a4 36.2-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $34.19516291$ 1.053781309 \( \frac{461373}{2} a - 531398 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 2 a - 5\) , \( -5 a + 11\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2a-5\right){x}-5a+11$
36.3-a4 36.3-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.799462546$ 1.053781309 \( \frac{461373}{2} a - 531398 \) \( \bigl[1\) , \( -a\) , \( a\) , \( -4 a - 4\) , \( -15 a - 20\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-4a-4\right){x}-15a-20$
256.1-c4 256.1-c \(\Q(\sqrt{13}) \) \( 2^{8} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.412266367$ 1.892784823 \( \frac{461373}{2} a - 531398 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 24 a - 56\) , \( 96 a - 220\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(24a-56\right){x}+96a-220$
256.1-d4 256.1-d \(\Q(\sqrt{13}) \) \( 2^{8} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.056267535$ $14.80693988$ 1.848593902 \( \frac{461373}{2} a - 531398 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -8\) , \( 8 a + 20\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-8{x}+8a+20$
256.1-f4 256.1-f \(\Q(\sqrt{13}) \) \( 2^{8} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.506407817$ $1.645215542$ 1.848593902 \( \frac{461373}{2} a - 531398 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -8\) , \( -8 a - 20\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-8{x}-8a-20$
324.1-a4 324.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.549688489$ 1.261856548 \( \frac{461373}{2} a - 531398 \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 13 a - 32\) , \( 33 a - 78\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(13a-32\right){x}+33a-78$
676.1-d4 676.1-d \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.461048252$ $3.785569646$ 1.936270087 \( \frac{461373}{2} a - 531398 \) \( \bigl[a\) , \( -a - 1\) , \( 1\) , \( -a - 7\) , \( 14 a + 10\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-7\right){x}+14a+10$
1156.2-b4 1156.2-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.310384624$ 0.918135500 \( \frac{461373}{2} a - 531398 \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -16 a - 21\) , \( 159 a + 205\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-16a-21\right){x}+159a+205$
1156.3-b4 1156.3-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.310384624$ 0.918135500 \( \frac{461373}{2} a - 531398 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 11 a - 25\) , \( 23 a - 50\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(11a-25\right){x}+23a-50$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.