Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
52.1-b1 52.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.383448027$ $0.385597965$ 0.591814903 \( -\frac{1064019559329}{125497034} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -213\) , \( -1257\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-213{x}-1257$
468.2-c1 468.2-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \cdot 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.646780683$ 2.511385605 \( -\frac{1064019559329}{125497034} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( 212 a - 850\) , \( -5027 a + 8797\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(212a-850\right){x}-5027a+8797$
468.3-c1 468.3-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \cdot 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.646780683$ 2.511385605 \( -\frac{1064019559329}{125497034} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -213 a - 638\) , \( 5027 a + 3770\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-213a-638\right){x}+5027a+3770$
676.1-a1 676.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.902669830$ 0.500711131 \( -\frac{1064019559329}{125497034} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 8295 a - 19354\) , \( -615801 a + 1419610\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(8295a-19354\right){x}-615801a+1419610$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.