Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
15.1-a6 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.961688882$ 2.865230004 \( \frac{272223782641}{164025} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -5944 a - 32518\) , \( -592970 a - 3247789\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-5944a-32518\right){x}-592970a-3247789$
15.1-b6 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 0.930394118 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 11454083 a - 62736611\) , \( -49312315902 a + 270094677816\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(11454083a-62736611\right){x}-49312315902a+270094677816$
15.1-c6 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.074445936$ $10.19195692$ 3.998632720 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 23758 a - 130126\) , \( -4553632 a + 24941270\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(23758a-130126\right){x}-4553632a+24941270$
15.1-d6 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.518449529$ $1.961688882$ 1.803984289 \( \frac{272223782641}{164025} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -135\) , \( -660\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-135{x}-660$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.