Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
15.1-a5 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $31.38702211$ 2.865230004 \( \frac{13997521}{225} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -224 a - 1188\) , \( 3752 a + 20593\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-224a-1188\right){x}+3752a+20593$
15.1-b5 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 0.930394118 \( \frac{13997521}{225} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 425923 a - 2332891\) , \( 350864730 a - 1921765280\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(425923a-2332891\right){x}+350864730a-1921765280$
15.1-c5 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.297783744$ $10.19195692$ 3.998632720 \( \frac{13997521}{225} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 878 a - 4806\) , \( 37104 a - 203226\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(878a-4806\right){x}+37104a-203226$
15.1-d5 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $2.518449529$ $31.38702211$ 1.803984289 \( \frac{13997521}{225} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -5\) , \( 2\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.