Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
15.1-a2 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $31.38702211$ 2.865230004 \( -\frac{1}{15} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -4 a + 17\) , \( 175 a + 1001\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-4a+17\right){x}+175a+1001$
15.1-b2 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 0.930394118 \( -\frac{1}{15} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 1763 a - 9671\) , \( 15245718 a - 83504244\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1763a-9671\right){x}+15245718a-83504244$
15.1-c2 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.148891872$ $10.19195692$ 3.998632720 \( -\frac{1}{15} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -2 a + 14\) , \( 1448 a - 7930\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a+14\right){x}+1448a-7930$
15.1-d2 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.259224764$ $31.38702211$ 1.803984289 \( -\frac{1}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.