Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.1-b4 96.1-b \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.97674429$ 1.297359770 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2720 a - 4711\) , \( -10125 a + 17537\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2720a-4711\right){x}-10125a+17537$
96.1-d4 96.1-d \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $26.09005771$ 0.941443865 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2720 a - 4711\) , \( 10125 a - 17537\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2720a-4711\right){x}+10125a-17537$
288.1-a4 288.1-a \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.04344473$ 1.449646380 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 113682 a - 196902\) , \( 3469554 a - 6009444\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(113682a-196902\right){x}+3469554a-6009444$
288.1-c4 288.1-c \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.205097939$ $15.56618300$ 1.843243885 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 113682 a - 196902\) , \( -3469554 a + 6009444\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(113682a-196902\right){x}-3469554a+6009444$
768.1-a4 768.1-a \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $26.09005771$ 1.882887730 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 37894 a - 65634\) , \( 667716 a - 1156518\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(37894a-65634\right){x}+667716a-1156518$
768.1-p4 768.1-p \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.847336011$ $17.97674429$ 2.198599305 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 37894 a - 65634\) , \( -667716 a + 1156518\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(37894a-65634\right){x}-667716a+1156518$
2304.1-u4 2304.1-u \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $15.56618300$ 2.246784987 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 1583386 a - 2742504\) , \( -176024176 a + 304882816\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(1583386a-2742504\right){x}-176024176a+304882816$
2304.1-x4 2304.1-x \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.04344473$ 1.449646380 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 1583386 a - 2742504\) , \( 176024176 a - 304882816\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(1583386a-2742504\right){x}+176024176a-304882816$
3072.1-s4 3072.1-s \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.530085740$ $19.06460280$ 2.917314563 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 282844 a - 489900\) , \( -13616268 a + 23584068\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(282844a-489900\right){x}-13616268a+23584068$
3072.1-ba4 3072.1-ba \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.934993618$ $12.30065743$ 3.320063175 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 20308 a - 35172\) , \( 261948 a - 453708\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(20308a-35172\right){x}+261948a-453708$
3072.1-be4 3072.1-be \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.30065743$ 1.775446970 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 282844 a - 489900\) , \( 13616268 a - 23584068\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(282844a-489900\right){x}+13616268a-23584068$
3072.1-bk4 3072.1-bk \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.06460280$ 2.751738390 \( \frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 20308 a - 35172\) , \( -261948 a + 453708\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(20308a-35172\right){x}-261948a+453708$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.