Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
24.1-a8 24.1-a \(\Q(\sqrt{3}) \) \( 2^{3} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.60223895$ 0.671250479 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 55 a - 111\) , \( -406 a + 717\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(55a-111\right){x}-406a+717$
24.1-b8 24.1-b \(\Q(\sqrt{3}) \) \( 2^{3} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.420877129$ 0.820343793 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 53 a - 114\) , \( 460 a - 830\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(53a-114\right){x}+460a-830$
144.1-a8 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.197737158$ 1.211782339 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -211 a - 410\) , \( 2494 a + 4157\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-211a-410\right){x}+2494a+4157$
144.1-c8 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098868579$ 1.211782339 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 2492 a - 4320\) , \( -117544 a + 203588\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(2492a-4320\right){x}-117544a+203588$
768.1-e8 768.1-e \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.710438564$ 1.640687586 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 218 a - 449\) , \( 3467 a - 6183\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(218a-449\right){x}+3467a-6183$
768.1-l8 768.1-l \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.079273864$ $9.301119475$ 2.897852395 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 218 a - 449\) , \( -3467 a + 6183\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(218a-449\right){x}-3467a+6183$
2304.1-q8 2304.1-q \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.786181258$ $2.098868579$ 3.376245242 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 9968 a - 17280\) , \( 940352 a - 1628704\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(9968a-17280\right){x}+940352a-1628704$
2304.1-bb8 2304.1-bb \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.786181258$ $1.049434289$ 3.376245242 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 9968 a - 17280\) , \( -940352 a + 1628704\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(9968a-17280\right){x}-940352a+1628704$
3072.1-e8 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.570578528$ 2.968248410 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 24812 a - 42976\) , \( 3661724 a - 6342292\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(24812a-42976\right){x}+3661724a-6342292$
3072.1-f8 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.719487697$ $2.570578528$ 2.760090861 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1770 a - 3105\) , \( 69998 a - 121131\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(1770a-3105\right){x}+69998a-121131$
3072.1-bt8 3072.1-bt \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.285289264$ 2.968248410 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 1770 a - 3105\) , \( -69998 a + 121131\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(1770a-3105\right){x}-69998a+121131$
3072.1-cc8 3072.1-cc \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.719487697$ $1.285289264$ 2.760090861 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 24812 a - 42976\) , \( -3661724 a + 6342292\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(24812a-42976\right){x}-3661724a+6342292$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.