Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
75.1-a3 75.1-a \(\Q(\sqrt{3}) \) \( 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.547989231$ 1.471082268 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 36\) , \( 63\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+36{x}+63$
75.1-b3 75.1-b \(\Q(\sqrt{3}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $2.600625687$ $1.961688882$ 0.736355203 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 35\) , \( -28\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+35{x}-28$
1875.1-c3 1875.1-c \(\Q(\sqrt{3}) \) \( 3 \cdot 5^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.509597846$ 1.176865815 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 873\) , \( 5226\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+873{x}+5226$
1875.1-d3 1875.1-d \(\Q(\sqrt{3}) \) \( 3 \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.801950709$ $0.392337776$ 4.350880830 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 874\) , \( -5227\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+874{x}-5227$
3600.1-d3 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $0.645391492$ 3.971591054 \( \frac{4733169839}{3515625} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a + 418\) , \( 1087 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a+418\right){x}+1087a-1$
3600.1-j3 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $0.645391492$ 3.971591054 \( \frac{4733169839}{3515625} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a + 418\) , \( -1088 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a+418\right){x}-1088a-1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.