Learn more

Refine search


Results (12 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1536.1-b1 1536.1-b \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $6.070636265$ 1.752441741 \( \frac{4000}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a + 8\) , \( -12 a - 20\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a+8\right){x}-12a-20$
1536.1-k1 1536.1-k \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $6.070636265$ 1.752441741 \( \frac{4000}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 8\) , \( -12 a + 20\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+8\right){x}-12a+20$
1536.1-n1 1536.1-n \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $6.070636265$ 1.752441741 \( \frac{4000}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4 a + 8\) , \( 12 a + 20\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4a+8\right){x}+12a+20$
1536.1-w1 1536.1-w \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $6.070636265$ 1.752441741 \( \frac{4000}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a + 8\) , \( 12 a - 20\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a+8\right){x}+12a-20$
3072.1-d1 3072.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $0.603762616$ $6.405092923$ 4.465406728 \( \frac{4000}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a + 13\) , \( 23 a - 39\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a+13\right){x}+23a-39$
3072.1-bb1 3072.1-bb \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $1.696743987$ $6.405092923$ 3.137264466 \( \frac{4000}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -94 a + 163\) , \( 1183 a - 2049\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-94a+163\right){x}+1183a-2049$
3072.1-bn1 3072.1-bn \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $2$ $\Z/2\Z$ $0.298069290$ $11.50728806$ 3.960587271 \( \frac{4000}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a + 13\) , \( -23 a + 39\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a+13\right){x}-23a+39$
3072.1-bu1 3072.1-bu \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $11.50728806$ 3.321867930 \( \frac{4000}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -94 a + 163\) , \( -1183 a + 2049\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-94a+163\right){x}-1183a+2049$
4608.1-g1 4608.1-g \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.373870495$ $4.697830679$ 4.056186517 \( \frac{4000}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -10 a + 21\) , \( -49 a + 86\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-10a+21\right){x}-49a+86$
4608.1-j1 4608.1-j \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.373870495$ $4.697830679$ 4.056186517 \( \frac{4000}{9} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 10 a + 21\) , \( 49 a + 86\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(10a+21\right){x}+49a+86$
4608.1-r1 4608.1-r \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $2.614868236$ 1.509694880 \( \frac{4000}{9} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -10 a + 21\) , \( 49 a - 86\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-10a+21\right){x}+49a-86$
4608.1-bd1 4608.1-bd \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $2.614868236$ 1.509694880 \( \frac{4000}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 10 a + 21\) , \( -49 a - 86\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(10a+21\right){x}-49a-86$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.