Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1536.1-b1 |
1536.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{20} \cdot 3^{4} \) |
$1.93788$ |
$(a+1), (a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$6.070636265$ |
1.752441741 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a + 8\) , \( -12 a - 20\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a+8\right){x}-12a-20$ |
1536.1-k1 |
1536.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{20} \cdot 3^{4} \) |
$1.93788$ |
$(a+1), (a)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$6.070636265$ |
1.752441741 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 8\) , \( -12 a + 20\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+8\right){x}-12a+20$ |
1536.1-n1 |
1536.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{20} \cdot 3^{4} \) |
$1.93788$ |
$(a+1), (a)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$6.070636265$ |
1.752441741 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4 a + 8\) , \( 12 a + 20\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4a+8\right){x}+12a+20$ |
1536.1-w1 |
1536.1-w |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{20} \cdot 3^{4} \) |
$1.93788$ |
$(a+1), (a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$6.070636265$ |
1.752441741 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a + 8\) , \( 12 a - 20\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a+8\right){x}+12a-20$ |
3072.1-d1 |
3072.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{14} \cdot 3^{4} \) |
$2.30454$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.603762616$ |
$6.405092923$ |
4.465406728 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a + 13\) , \( 23 a - 39\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a+13\right){x}+23a-39$ |
3072.1-bb1 |
3072.1-bb |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{14} \cdot 3^{4} \) |
$2.30454$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.696743987$ |
$6.405092923$ |
3.137264466 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -94 a + 163\) , \( 1183 a - 2049\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-94a+163\right){x}+1183a-2049$ |
3072.1-bn1 |
3072.1-bn |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{14} \cdot 3^{4} \) |
$2.30454$ |
$(a+1), (a)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.298069290$ |
$11.50728806$ |
3.960587271 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a + 13\) , \( -23 a + 39\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a+13\right){x}-23a+39$ |
3072.1-bu1 |
3072.1-bu |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{14} \cdot 3^{4} \) |
$2.30454$ |
$(a+1), (a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$11.50728806$ |
3.321867930 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -94 a + 163\) , \( -1183 a + 2049\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-94a+163\right){x}-1183a+2049$ |
4608.1-g1 |
4608.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{10} \) |
$2.55039$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.373870495$ |
$4.697830679$ |
4.056186517 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -10 a + 21\) , \( -49 a + 86\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-10a+21\right){x}-49a+86$ |
4608.1-j1 |
4608.1-j |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{10} \) |
$2.55039$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.373870495$ |
$4.697830679$ |
4.056186517 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( 10 a + 21\) , \( 49 a + 86\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(10a+21\right){x}+49a+86$ |
4608.1-r1 |
4608.1-r |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{10} \) |
$2.55039$ |
$(a+1), (a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.614868236$ |
1.509694880 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -10 a + 21\) , \( 49 a - 86\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-10a+21\right){x}+49a-86$ |
4608.1-bd1 |
4608.1-bd |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{10} \) |
$2.55039$ |
$(a+1), (a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.614868236$ |
1.509694880 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 10 a + 21\) , \( -49 a - 86\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(10a+21\right){x}-49a-86$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.