Learn more

Refine search


Results (12 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1536.1-a4 1536.1-a \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $5.214487533$ 1.505292890 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -16 a - 32\) , \( -56 a - 96\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-16a-32\right){x}-56a-96$
1536.1-c4 1536.1-c \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $1$ $\Z/2\Z$ $1.171973525$ $5.214487533$ 3.528326832 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 26 a - 49\) , \( 74 a - 133\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(26a-49\right){x}+74a-133$
1536.1-v4 1536.1-v \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $17.42092743$ 2.514494285 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -16 a - 32\) , \( 56 a + 96\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-16a-32\right){x}+56a+96$
1536.1-x4 1536.1-x \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) $1$ $\Z/4\Z$ $0.506068181$ $17.42092743$ 2.545011098 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 26 a - 49\) , \( -74 a + 133\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(26a-49\right){x}-74a+133$
3072.1-c4 3072.1-c \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $9.011399049$ 2.601366833 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -32 a - 56\) , \( -142 a - 246\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-32a-56\right){x}-142a-246$
3072.1-h4 3072.1-h \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $9.011399049$ 1.300683416 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 2 a - 9\) , \( -3 a + 3\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(2a-9\right){x}-3a+3$
3072.1-bx4 3072.1-bx \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $0.274362612$ $20.16139966$ 3.193632813 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -32 a - 56\) , \( 142 a + 246\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-32a-56\right){x}+142a+246$
3072.1-cb4 3072.1-cb \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $0.732026511$ $20.16139966$ 4.260463665 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 2 a - 9\) , \( 3 a - 3\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(2a-9\right){x}+3a-3$
4608.1-b4 4608.1-b \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.396249456$ $8.230856948$ 3.766024158 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 78 a - 147\) , \( 399 a - 666\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(78a-147\right){x}+399a-666$
4608.1-c4 4608.1-c \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $8.230856948$ 2.376043737 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -46 a - 99\) , \( 241 a + 406\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-46a-99\right){x}+241a+406$
4608.1-bc4 4608.1-bc \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $3.678888256$ 1.062003562 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 78 a - 147\) , \( -399 a + 666\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(78a-147\right){x}-399a+666$
4608.1-bf4 4608.1-bf \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.017672002$ $3.678888256$ 4.323085168 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -46 a - 99\) , \( -241 a - 406\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-46a-99\right){x}-241a-406$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.