Learn more

Refine search


Results (4 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
600.1-a1 600.1-a \(\Q(\sqrt{3}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $0.891621139$ $15.64258266$ 2.013113201 \( \frac{21296}{15} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 2 a + 6\) , \( 3 a + 6\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+6\right){x}+3a+6$
600.1-d1 600.1-d \(\Q(\sqrt{3}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.374384071$ $12.39841016$ 2.679925586 \( \frac{21296}{15} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 4 a + 7\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(4a+7\right){x}$
3600.1-a1 3600.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $8.040380502$ 2.321057923 \( \frac{21296}{15} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 3\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+3{x}$
3600.1-f1 3600.1-f \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $8.040380502$ 2.321057923 \( \frac{21296}{15} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 3\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+3{x}$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.