Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
512.1-a4 512.1-a \(\Q(\sqrt{3}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.70900640$ 1.350206235 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -556 a + 964\) , \( -10464 a + 18124\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-556a+964\right){x}-10464a+18124$
512.1-b4 512.1-b \(\Q(\sqrt{3}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.592594401$ $5.952999858$ 2.227664748 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -40 a + 70\) , \( 172 a - 298\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-40a+70\right){x}+172a-298$
512.1-g4 512.1-g \(\Q(\sqrt{3}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.648148600$ $5.952999858$ 2.227664748 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -556 a + 964\) , \( 10464 a - 18124\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-556a+964\right){x}+10464a-18124$
512.1-h4 512.1-h \(\Q(\sqrt{3}) \) \( 2^{9} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.70900640$ 1.350206235 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -40 a + 70\) , \( -172 a + 298\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-40a+70\right){x}-172a+298$
1024.1-c4 1024.1-c \(\Q(\sqrt{3}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.55342183$ 1.523255234 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -298 a + 517\) , \( 3807 a - 6594\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-298a+517\right){x}+3807a-6594$
1024.1-d4 1024.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.741115149$ $5.276710919$ 2.652162765 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -22 a + 37\) , \( -89 a + 154\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-22a+37\right){x}-89a+154$
1024.1-q4 1024.1-q \(\Q(\sqrt{3}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.276710919$ 1.523255234 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -10 a - 11\) , \( -23 a - 38\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-10a-11\right){x}-23a-38$
1024.1-r4 1024.1-r \(\Q(\sqrt{3}) \) \( 2^{10} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.741115149$ $10.55342183$ 2.652162765 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -22 a + 37\) , \( 89 a - 154\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-22a+37\right){x}+89a-154$
4608.1-a4 4608.1-a \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.616832848$ 2.487465382 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -120 a + 207\) , \( 1014 a - 1756\bigr] \) ${y}^2={x}^{3}+\left(-120a+207\right){x}+1014a-1756$
4608.1-f4 4608.1-f \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.442267495$ $8.616832848$ 3.587590466 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1668 a + 2889\) , \( 52704 a - 91286\bigr] \) ${y}^2={x}^{3}+\left(-1668a+2889\right){x}+52704a-91286$
4608.1-bb4 4608.1-bb \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.308416424$ 2.487465382 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1668 a + 2889\) , \( -52704 a + 91286\bigr] \) ${y}^2={x}^{3}+\left(-1668a+2889\right){x}-52704a+91286$
4608.1-be4 4608.1-be \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.442267495$ $4.308416424$ 3.587590466 \( 2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -120 a + 207\) , \( -1014 a + 1756\bigr] \) ${y}^2={x}^{3}+\left(-120a+207\right){x}-1014a+1756$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.