Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
600.1-a3 |
600.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{8} \) |
$1.53203$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.222905284$ |
$3.910645665$ |
2.013113201 |
\( \frac{136835858}{1875} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -138 a - 239\) , \( -1187 a - 2059\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-138a-239\right){x}-1187a-2059$ |
600.1-d3 |
600.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{8} \) |
$1.53203$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.374384071$ |
$12.39841016$ |
2.679925586 |
\( \frac{136835858}{1875} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -136 a - 238\) , \( 1050 a + 1820\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-136a-238\right){x}+1050a+1820$ |
3600.1-a3 |
3600.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$4.020190251$ |
2.321057923 |
\( \frac{136835858}{1875} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -102\) , \( -210 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-102{x}-210a$ |
3600.1-f3 |
3600.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$4.020190251$ |
2.321057923 |
\( \frac{136835858}{1875} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -102\) , \( 210 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-102{x}+210a$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.