Learn more

Refine search


Results (4 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
600.1-a3 600.1-a \(\Q(\sqrt{3}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.222905284$ $3.910645665$ 2.013113201 \( \frac{136835858}{1875} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -138 a - 239\) , \( -1187 a - 2059\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-138a-239\right){x}-1187a-2059$
600.1-d3 600.1-d \(\Q(\sqrt{3}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $0.374384071$ $12.39841016$ 2.679925586 \( \frac{136835858}{1875} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -136 a - 238\) , \( 1050 a + 1820\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-136a-238\right){x}+1050a+1820$
3600.1-a3 3600.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $4.020190251$ 2.321057923 \( \frac{136835858}{1875} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -102\) , \( -210 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-102{x}-210a$
3600.1-f3 3600.1-f \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $4.020190251$ 2.321057923 \( \frac{136835858}{1875} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -102\) , \( 210 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-102{x}+210a$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.