Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
150.1-a3 150.1-a \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.248395236$ 1.081141989 \( \frac{10316097499609}{5859375000} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -454\) , \( -544\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-454{x}-544$
150.1-b3 150.1-b \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.341872283$ 1.549460648 \( \frac{10316097499609}{5859375000} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -455\) , \( 543\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-455{x}+543$
3600.1-g3 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.562837774$ $0.373629380$ 3.694265501 \( \frac{10316097499609}{5859375000} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -5442\) , \( 13050 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-5442{x}+13050a$
3600.1-o3 3600.1-o \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.562837774$ $0.373629380$ 3.694265501 \( \frac{10316097499609}{5859375000} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -5442\) , \( -13050 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-5442{x}-13050a$
3750.1-c3 3750.1-c \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.377412203$ $0.268374456$ 3.332835439 \( \frac{10316097499609}{5859375000} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -11337\) , \( 56631\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-11337{x}+56631$
3750.1-l3 3750.1-l \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.765577577$ $0.249679047$ 4.783971269 \( \frac{10316097499609}{5859375000} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -11338\) , \( -67969\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-11338{x}-67969$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.