Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1536.1-b3 |
1536.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{17} \cdot 3 \) |
$1.93788$ |
$(a+1), (a)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$24.28254506$ |
1.752441741 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a - 17\) , \( 23 a + 45\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a-17\right){x}+23a+45$ |
1536.1-k3 |
1536.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{17} \cdot 3 \) |
$1.93788$ |
$(a+1), (a)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1$ |
$24.28254506$ |
1.752441741 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 26 a - 47\) , \( -77 a + 135\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(26a-47\right){x}-77a+135$ |
1536.1-n3 |
1536.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{17} \cdot 3 \) |
$1.93788$ |
$(a+1), (a)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$6.070636265$ |
1.752441741 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a - 17\) , \( -23 a - 45\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a-17\right){x}-23a-45$ |
1536.1-w3 |
1536.1-w |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1536.1 |
\( 2^{9} \cdot 3 \) |
\( 2^{17} \cdot 3 \) |
$1.93788$ |
$(a+1), (a)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 1 \) |
$1$ |
$6.070636265$ |
1.752441741 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 26 a - 47\) , \( 77 a - 135\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(26a-47\right){x}+77a-135$ |
3072.1-d3 |
3072.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{23} \cdot 3 \) |
$2.30454$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$2.415050467$ |
$6.405092923$ |
4.465406728 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 10 a - 33\) , \( 50 a - 69\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(10a-33\right){x}+50a-69$ |
3072.1-bb3 |
3072.1-bb |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{23} \cdot 3 \) |
$2.30454$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.696743987$ |
$6.405092923$ |
3.137264466 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 204 a - 352\) , \( 2132 a - 3692\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(204a-352\right){x}+2132a-3692$ |
3072.1-bn3 |
3072.1-bn |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{23} \cdot 3 \) |
$2.30454$ |
$(a+1), (a)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.298069290$ |
$11.50728806$ |
3.960587271 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 10 a - 33\) , \( -50 a + 69\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(10a-33\right){x}-50a+69$ |
3072.1-bu3 |
3072.1-bu |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3072.1 |
\( 2^{10} \cdot 3 \) |
\( 2^{23} \cdot 3 \) |
$2.30454$ |
$(a+1), (a)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$11.50728806$ |
3.321867930 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 204 a - 352\) , \( -2132 a + 3692\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(204a-352\right){x}-2132a+3692$ |
4608.1-g3 |
4608.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{17} \cdot 3^{7} \) |
$2.55039$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.373870495$ |
$9.395661359$ |
4.056186517 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 80 a - 144\) , \( -484 a + 836\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(80a-144\right){x}-484a+836$ |
4608.1-j3 |
4608.1-j |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{17} \cdot 3^{7} \) |
$2.55039$ |
$(a+1), (a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.495481981$ |
$9.395661359$ |
4.056186517 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -20 a - 54\) , \( -116 a - 154\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-20a-54\right){x}-116a-154$ |
4608.1-r3 |
4608.1-r |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{17} \cdot 3^{7} \) |
$2.55039$ |
$(a+1), (a)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.229736472$ |
1.509694880 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( 80 a - 144\) , \( 484 a - 836\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(80a-144\right){x}+484a-836$ |
4608.1-bd3 |
4608.1-bd |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
4608.1 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{17} \cdot 3^{7} \) |
$2.55039$ |
$(a+1), (a)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.229736472$ |
1.509694880 |
\( -\frac{17879000}{3} a + 10335000 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -20 a - 54\) , \( 116 a + 154\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-20a-54\right){x}+116a+154$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.