Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1536.1-b3 1536.1-b \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $24.28254506$ 1.752441741 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a - 17\) , \( 23 a + 45\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a-17\right){x}+23a+45$
1536.1-k3 1536.1-k \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $24.28254506$ 1.752441741 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 26 a - 47\) , \( -77 a + 135\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(26a-47\right){x}-77a+135$
1536.1-n3 1536.1-n \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.070636265$ 1.752441741 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a - 17\) , \( -23 a - 45\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a-17\right){x}-23a-45$
1536.1-w3 1536.1-w \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.070636265$ 1.752441741 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 26 a - 47\) , \( 77 a - 135\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(26a-47\right){x}+77a-135$
3072.1-d3 3072.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.415050467$ $6.405092923$ 4.465406728 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 10 a - 33\) , \( 50 a - 69\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(10a-33\right){x}+50a-69$
3072.1-bb3 3072.1-bb \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.696743987$ $6.405092923$ 3.137264466 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 204 a - 352\) , \( 2132 a - 3692\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(204a-352\right){x}+2132a-3692$
3072.1-bn3 3072.1-bn \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.298069290$ $11.50728806$ 3.960587271 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 10 a - 33\) , \( -50 a + 69\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(10a-33\right){x}-50a+69$
3072.1-bu3 3072.1-bu \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.50728806$ 3.321867930 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 204 a - 352\) , \( -2132 a + 3692\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(204a-352\right){x}-2132a+3692$
4608.1-g3 4608.1-g \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.373870495$ $9.395661359$ 4.056186517 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 80 a - 144\) , \( -484 a + 836\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(80a-144\right){x}-484a+836$
4608.1-j3 4608.1-j \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.495481981$ $9.395661359$ 4.056186517 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -20 a - 54\) , \( -116 a - 154\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-20a-54\right){x}-116a-154$
4608.1-r3 4608.1-r \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.229736472$ 1.509694880 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 80 a - 144\) , \( 484 a - 836\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(80a-144\right){x}+484a-836$
4608.1-bd3 4608.1-bd \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.229736472$ 1.509694880 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -20 a - 54\) , \( 116 a + 154\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-20a-54\right){x}+116a+154$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.