Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.1-a2 96.1-a \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $26.09005771$ 0.941443865 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 50243 a - 87023\) , \( -8019946 a + 13890954\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(50243a-87023\right){x}-8019946a+13890954$
96.1-c2 96.1-c \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.988372149$ 1.297359770 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 50243 a - 87026\) , \( 8070189 a - 13977979\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(50243a-87026\right){x}+8070189a-13977979$
288.1-b2 288.1-b \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.021722368$ 1.449646380 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 10822 a - 18744\) , \( 809620 a - 1402303\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(10822a-18744\right){x}+809620a-1402303$
288.1-d2 288.1-d \(\Q(\sqrt{3}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.410195878$ $15.56618300$ 1.843243885 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 10822 a - 18744\) , \( -809620 a + 1402303\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(10822a-18744\right){x}-809620a+1402303$
768.1-c2 768.1-c \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.694672022$ $4.494186074$ 2.198599305 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 200974 a - 348097\) , \( 64360541 a - 111475727\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(200974a-348097\right){x}+64360541a-111475727$
768.1-n2 768.1-n \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.04502885$ 1.882887730 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 200974 a - 348097\) , \( -64360541 a + 111475727\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(200974a-348097\right){x}-64360541a+111475727$
2304.1-b2 2304.1-b \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.510861184$ 1.449646380 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 43288 a - 74976\) , \( 6476960 a - 11218424\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(43288a-74976\right){x}+6476960a-11218424$
2304.1-e2 2304.1-e \(\Q(\sqrt{3}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.783091503$ 2.246784987 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 43288 a - 74976\) , \( -6476960 a + 11218424\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(43288a-74976\right){x}-6476960a+11218424$
3072.1-b2 3072.1-b \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.060171480$ $9.532301402$ 2.917314563 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 107702 a - 186545\) , \( -25356654 a + 43919013\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(107702a-186545\right){x}-25356654a+43919013$
3072.1-i2 3072.1-i \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.532301402$ 2.751738390 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 1500096 a - 2598240\) , \( -1316558104 a + 2280345528\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(1500096a-2598240\right){x}-1316558104a+2280345528$
3072.1-br2 3072.1-br \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.075164358$ 1.775446970 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 107702 a - 186545\) , \( 25356654 a - 43919013\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(107702a-186545\right){x}+25356654a-43919013$
3072.1-cd2 3072.1-cd \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.869987237$ $3.075164358$ 3.320063175 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 1500096 a - 2598240\) , \( 1316558104 a - 2280345528\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(1500096a-2598240\right){x}+1316558104a-2280345528$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.