Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
81.1-a1 81.1-a \(\Q(\sqrt{3}) \) \( 3^{4} \) 0 $\mathsf{trivial}$ $-27$ $N(\mathrm{U}(1))$ $1$ $1.040337491$ 0.900958696 \( -12288000 \) \( \bigl[0\) , \( 0\) , \( a\) , \( -30\) , \( -64\bigr] \) ${y}^2+a{y}={x}^{3}-30{x}-64$
81.1-a2 81.1-a \(\Q(\sqrt{3}) \) \( 3^{4} \) 0 $\Z/3\Z$ $-27$ $N(\mathrm{U}(1))$ $1$ $28.08911226$ 0.900958696 \( -12288000 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -30\) , \( 63\bigr] \) ${y}^2+{y}={x}^{3}-30{x}+63$
1296.1-e1 1296.1-e \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $-27$ $N(\mathrm{U}(1))$ $1$ $4.681518711$ 1.351438044 \( -12288000 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -39\) , \( -43 a\bigr] \) ${y}^2={x}^{3}-a{x}^{2}-39{x}-43a$
1296.1-e2 1296.1-e \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $-27$ $N(\mathrm{U}(1))$ $1$ $4.681518711$ 1.351438044 \( -12288000 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -39\) , \( 43 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}-39{x}+43a$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.