Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
75.1-a2 |
75.1-a |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
75.1 |
\( 3 \cdot 5^{2} \) |
\( 3^{2} \cdot 5^{2} \) |
$0.91095$ |
$(a), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$10.19195692$ |
1.471082268 |
\( -\frac{1}{15} \) |
\( \bigl[a\) , \( a + 1\) , \( 1\) , \( 227 a - 390\) , \( 392730 a - 680227\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(227a-390\right){x}+392730a-680227$ |
75.1-b2 |
75.1-b |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
75.1 |
\( 3 \cdot 5^{2} \) |
\( 3^{2} \cdot 5^{2} \) |
$0.91095$ |
$(a), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.325078210$ |
$31.38702211$ |
0.736355203 |
\( -\frac{1}{15} \) |
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( 225 a - 391\) , \( -392504 a + 679835\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(225a-391\right){x}-392504a+679835$ |
1875.1-c2 |
1875.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1875.1 |
\( 3 \cdot 5^{4} \) |
\( 3^{2} \cdot 5^{14} \) |
$2.03695$ |
$(a), (5)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$2.038391385$ |
1.176865815 |
\( -\frac{1}{15} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -2\) , \( -24\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-2{x}-24$ |
1875.1-d2 |
1875.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
1875.1 |
\( 3 \cdot 5^{4} \) |
\( 3^{2} \cdot 5^{14} \) |
$2.03695$ |
$(a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.600243838$ |
$6.277404423$ |
4.350880830 |
\( -\frac{1}{15} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 23\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}+23$ |
3600.1-d2 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.333082592$ |
$5.163131942$ |
3.971591054 |
\( -\frac{1}{15} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 2\) , \( -5 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-2\right){x}-5a-1$ |
3600.1-j2 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.333082592$ |
$5.163131942$ |
3.971591054 |
\( -\frac{1}{15} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 2\) , \( 4 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-2\right){x}+4a-1$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.