Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1800.2-a2 |
1800.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{2} \) |
$1.64627$ |
$(a), (-a-1), (a-1), (5)$ |
$1$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{8} \) |
$0.380232254$ |
$1.531575020$ |
3.294292960 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( 20\) , \( -10\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+20{x}-10$ |
3600.2-c2 |
3600.2-c |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
3600.2 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{2} \) |
$1.95776$ |
$(a), (-a-1), (a-1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.573114426$ |
$1.531575020$ |
2.482702081 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 20\) , \( 10\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+20{x}+10$ |
16200.3-g2 |
16200.3-g |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
16200.3 |
\( 2^{3} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{28} \cdot 5^{2} \) |
$2.85143$ |
$(a), (-a-1), (a-1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.510525006$ |
2.887965554 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 181\) , \( 91\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+181{x}+91$ |
32400.3-d2 |
32400.3-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
32400.3 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{28} \cdot 5^{2} \) |
$3.39094$ |
$(a), (-a-1), (a-1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.864710766$ |
$0.510525006$ |
4.994509813 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 180\) , \( -270\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+180{x}-270$ |
45000.2-b2 |
45000.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
45000.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{4} \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{14} \) |
$3.68118$ |
$(a), (-a-1), (a-1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.800649340$ |
$0.306315004$ |
2.774697258 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( 499\) , \( -751\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+499{x}-751$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.