Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
5202.5-c3 |
5202.5-c |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
5202.5 |
\( 2 \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{8} \cdot 17^{4} \) |
$2.14648$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.286507785$ |
$2.302301329$ |
1.865707623 |
\( \frac{46268279}{46818} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( 8\) , \( 10\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}+8{x}+10$ |
41616.5-v3 |
41616.5-v |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{8} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \) |
$0.296073030$ |
$1.151150664$ |
7.711981829 |
\( \frac{46268279}{46818} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 31\) , \( 50\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+31{x}+50$ |
46818.8-t3 |
46818.8-t |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{20} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1$ |
$0.767433776$ |
4.341261019 |
\( \frac{46268279}{46818} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 67\) , \( -201\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+67{x}-201$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.