Learn more

Refine search


Results (6 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
5202.1-a2 5202.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.035586375$ $3.063864834$ 2.467109039 \( \frac{243529}{54} a + \frac{352727}{54} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 2 a - 7\) , \( 2 a - 6\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(2a-7\right){x}+2a-6$
5202.1-b2 5202.1-b \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $0.743096372$ 2.101793936 \( \frac{243529}{54} a + \frac{352727}{54} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 78 a + 55\) , \( 73 a + 569\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(78a+55\right){x}+73a+569$
15606.7-d2 15606.7-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \cdot 17^{2} \) $0$ $\Z/3\Z$ $1$ $0.743096372$ 2.101793936 \( \frac{243529}{54} a + \frac{352727}{54} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -37 a - 114\) , \( -211 a - 380\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-37a-114\right){x}-211a-380$
15606.7-g2 15606.7-g \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.342559872$ $3.063864834$ 5.937191811 \( \frac{243529}{54} a + \frac{352727}{54} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( -5 a + 2\) , \( -2 a + 4\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(-5a+2\right){x}-2a+4$
41616.1-f2 41616.1-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.772259760$ $0.371548186$ 7.449849637 \( \frac{243529}{54} a + \frac{352727}{54} \) \( \bigl[a\) , \( a\) , \( a\) , \( 315 a + 223\) , \( 492 a + 3703\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(315a+223\right){x}+492a+3703$
41616.1-g2 41616.1-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $1.531932417$ 4.332959202 \( \frac{243529}{54} a + \frac{352727}{54} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 10 a - 26\) , \( 16 a - 46\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(10a-26\right){x}+16a-46$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.