Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.1-a1 200.1-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 1.059560260 \( \frac{237276}{625} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 5\) , \( 3\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+5{x}+3$
400.1-a1 400.1-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.722205338$ $2.996888981$ 1.530440152 \( \frac{237276}{625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 4\) , \( -6\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+4{x}-6$
5000.1-c1 5000.1-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 5^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.599377796$ 1.695296417 \( \frac{237276}{625} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 83\) , \( 491\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+83{x}+491$
10000.1-e1 10000.1-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{4} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.445334919$ $0.599377796$ 4.900542221 \( \frac{237276}{625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 82\) , \( -572\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+82{x}-572$
16200.3-a1 16200.3-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.170940323$ $0.998962993$ 3.863926898 \( \frac{237276}{625} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 31\) , \( -129\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+31{x}-129$
25600.1-e1 25600.1-e \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.264839765$ $1.059560260$ 3.790584357 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -26\) , \( 68 a\bigr] \) ${y}^2={x}^{3}-26{x}+68a$
25600.1-f1 25600.1-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.264839765$ $1.059560260$ 3.790584357 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -26\) , \( -68 a\bigr] \) ${y}^2={x}^{3}-26{x}-68a$
32400.3-m1 32400.3-m \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.500528594$ $0.998962993$ 5.656962216 \( \frac{237276}{625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 30\) , \( 100\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+30{x}+100$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.