Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2450.1-a4 |
2450.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{4} \cdot 7^{8} \) |
$1.77818$ |
$(a), (5), (7)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.924987233$ |
2.616258981 |
\( \frac{2121328796049}{120050} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -268\) , \( -1619\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-268{x}-1619$ |
19600.1-d4 |
19600.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
19600.1 |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{14} \cdot 5^{4} \cdot 7^{8} \) |
$2.99053$ |
$(a), (5), (7)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{5} \) |
$0.613941328$ |
$0.462493616$ |
3.212459027 |
\( \frac{2121328796049}{120050} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -1070\) , \( -12950\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1070{x}-12950$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.