Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
5202.5-d8
5202.5-d
$8$
$12$
\(\Q(\sqrt{-2}) \)
$2$
$[0, 1]$
5202.5
\( 2 \cdot 3^{2} \cdot 17^{2} \)
\( 2^{12} \cdot 3^{12} \cdot 17^{2} \)
$2.14648$
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$
$1$
$\Z/6\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$2, 3$
2B , 3B.1.1
$1$
\( 2^{3} \cdot 3^{2} \)
$1.515022365$
$0.831735869$
3.564096622
\( \frac{1845026709625}{793152} \)
\( \bigl[1\) , \( 0\) , \( 1\) , \( -256\) , \( 1550\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}-256{x}+1550$
41616.5-e8
41616.5-e
$8$
$12$
\(\Q(\sqrt{-2}) \)
$2$
$[0, 1]$
41616.5
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \)
\( 2^{24} \cdot 3^{12} \cdot 17^{2} \)
$3.60993$
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2, 3$
2B , 3B
$1$
\( 2^{4} \)
$1.573288479$
$0.415867934$
3.701167903
\( \frac{1845026709625}{793152} \)
\( \bigl[a\) , \( 1\) , \( 0\) , \( -1022\) , \( 12402\bigr] \)
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-1022{x}+12402$
46818.8-s8
46818.8-s
$8$
$12$
\(\Q(\sqrt{-2}) \)
$2$
$[0, 1]$
46818.8
\( 2 \cdot 3^{4} \cdot 17^{2} \)
\( 2^{12} \cdot 3^{24} \cdot 17^{2} \)
$3.71781$
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2, 3$
2B , 3B.1.2
$1$
\( 2^{4} \cdot 3 \)
$1$
$0.277245289$
2.352504294
\( \frac{1845026709625}{793152} \)
\( \bigl[1\) , \( -1\) , \( 1\) , \( -2300\) , \( -41857\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-2300{x}-41857$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.