Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
5202.5-i5 |
5202.5-i |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
5202.5 |
\( 2 \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{16} \cdot 17^{4} \) |
$2.14648$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$0$ |
$\Z/2\Z\oplus\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{11} \) |
$1$ |
$0.735016588$ |
4.157881714 |
\( \frac{163936758817}{30338064} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -114\) , \( -396\bigr] \) |
${y}^2+{x}{y}={x}^{3}-114{x}-396$ |
41616.5-g5 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{20} \cdot 3^{16} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.913490884$ |
$0.367508294$ |
3.978034379 |
\( \frac{163936758817}{30338064} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -456\) , \( -3168\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-456{x}-3168$ |
46818.8-k5 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{28} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1.706253872$ |
$0.245005529$ |
4.729601183 |
\( \frac{163936758817}{30338064} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -1026\) , \( 10692\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-1026{x}+10692$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.