Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
225.2-a5 225.2-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.471403425$ 0.395219960 \( \frac{13997521}{225} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -5\) , \( 2\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2$
2025.3-a5 2025.3-a \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.490467808$ 2.107839788 \( \frac{13997521}{225} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -45\) , \( -104\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-45{x}-104$
3600.2-f5 3600.2-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.235701712$ 3.161759683 \( \frac{13997521}{225} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -19\) , \( 38\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-19{x}+38$
5625.2-b5 5625.2-b \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 5^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.297783744$ $0.894280685$ 5.435423749 \( \frac{13997521}{225} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -126\) , \( 523\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-126{x}+523$
32400.3-c5 32400.3-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.430582047$ $0.745233904$ 7.260783784 \( \frac{13997521}{225} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -180\) , \( -832\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-180{x}-832$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.