Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
13122.5-d2 |
13122.5-d |
$4$ |
$21$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
13122.5 |
\( 2 \cdot 3^{8} \) |
\( 2^{6} \cdot 3^{20} \) |
$2.70510$ |
$(a), (-a-1), (a-1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3, 7$ |
2Cn, 3B.1.2, 7B |
$1$ |
\( 2 \) |
$0.900479884$ |
$1.361465512$ |
3.467573330 |
\( -\frac{140625}{8} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -42\) , \( -100\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-42{x}-100$ |
13122.5-e2 |
13122.5-e |
$4$ |
$21$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
13122.5 |
\( 2 \cdot 3^{8} \) |
\( 2^{6} \cdot 3^{8} \) |
$2.70510$ |
$(a), (-a-1), (a-1)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3, 7$ |
2Cn, 3B.1.1, 7B.2.1 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$4.084396538$ |
1.925402993 |
\( -\frac{140625}{8} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -5\) , \( 5\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-5{x}+5$ |
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.