Learn more

Refine search


Results (15 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
224.1-a4 224.1-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.472144299$ 1.312347190 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -12 a + 6\) , \( 14 a - 13\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-12a+6\right){x}+14a-13$
448.1-a4 448.1-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.554205750$ $4.910353558$ 1.028572174 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( -a\) , \( a\) , \( 4 a - 6\) , \( 5 a - 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(4a-6\right){x}+5a-1$
1568.1-a4 1568.1-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.312347190$ 0.992041228 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( a\) , \( a\) , \( 75 a - 37\) , \( 206 a + 116\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(75a-37\right){x}+206a+116$
3136.1-a4 3136.1-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.855939195$ 1.402958159 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -28 a + 47\) , \( 32 a + 147\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-28a+47\right){x}+32a+147$
3584.5-a4 3584.5-a \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.084208149$ $1.736072149$ 2.845715037 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -6 a + 59\) , \( -103 a + 13\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-6a+59\right){x}-103a+13$
7168.5-e4 7168.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.975073107$ $2.455176779$ 3.619352797 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -11 a - 18\) , \( -48 a - 18\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-11a-18\right){x}-48a-18$
14336.7-b4 14336.7-b \(\Q(\sqrt{-7}) \) \( 2^{11} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.227588389$ 1.855939195 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -47 a - 71\) , \( 219 a + 167\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-47a-71\right){x}+219a+167$
14336.7-e4 14336.7-e \(\Q(\sqrt{-7}) \) \( 2^{11} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.023296860$ $1.227588389$ 3.755115945 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -47 a - 71\) , \( -219 a - 167\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-47a-71\right){x}-219a-167$
18144.1-a4 18144.1-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.370689056$ $1.157381433$ 2.594521287 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -96 a + 48\) , \( -241 a + 470\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-96a+48\right){x}-241a+470$
25088.5-f4 25088.5-f \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.656173595$ 1.984082456 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 40 a - 416\) , \( 580 a - 3208\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(40a-416\right){x}+580a-3208$
27104.1-a4 27104.1-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7 \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.046890896$ 1.582750263 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 34 a - 168\) , \( -285 a + 750\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(34a-168\right){x}-285a+750$
27104.3-d4 27104.3-d \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7 \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.046890896$ 1.582750263 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 31 a + 136\) , \( 488 a - 521\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(31a+136\right){x}+488a-521$
28672.7-j4 28672.7-j \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.736072149$ 2.624694380 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 42 a - 7\) , \( -37 a - 156\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(42a-7\right){x}-37a-156$
28672.7-u4 28672.7-u \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.736072149$ 2.624694380 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 42 a - 7\) , \( 37 a + 156\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(42a-7\right){x}+37a+156$
36288.1-e4 36288.1-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239805762$ $1.636784519$ 5.542591071 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 37 a - 59\) , \( -156 a + 177\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(37a-59\right){x}-156a+177$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.