Learn more

Refine search


Results (9 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1008.1-a4 1008.1-a \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.318752128$ $2.804887001$ 1.351697264 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( -a\) , \( a\) , \( 6 a - 2\) , \( -7 a + 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(6a-2\right){x}-7a+1$
3528.1-c4 3528.1-c \(\Q(\sqrt{-7}) \) \( 2^{3} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.082125192$ $1.060147637$ 3.468844441 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -42 a + 19\) , \( 60 a - 119\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-42a+19\right){x}+60a-119$
4032.1-b4 4032.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.983354618$ 1.499275166 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -10 a - 6\) , \( -20 a + 15\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-10a-6\right){x}-20a+15$
8064.5-c4 8064.5-c \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.402443500$ 2.120295274 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 5 a - 34\) , \( -14 a + 56\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(5a-34\right){x}-14a+56$
9072.1-b4 9072.1-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.934962333$ 2.827060365 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 55 a - 23\) , \( 96 a + 123\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(55a-23\right){x}+96a+123$
28224.1-f4 28224.1-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.749637583$ 1.133345496 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( a\) , \( a\) , \( 61 a + 47\) , \( 108 a - 528\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(61a+47\right){x}+108a-528$
31752.1-a4 31752.1-a \(\Q(\sqrt{-7}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.392090523$ $0.353382545$ 2.974976467 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -381 a + 171\) , \( -1837 a + 3982\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-381a+171\right){x}-1837a+3982$
32256.7-j4 32256.7-j \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.645967249$ $0.991677309$ 4.935515645 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 26 a + 41\) , \( -59 a + 182\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(26a+41\right){x}-59a+182$
36288.1-b4 36288.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -78 a - 60\) , \( 551 a - 106\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-78a-60\right){x}+551a-106$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.