Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
63.1-a3 |
63.1-a |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
63.1 |
\( 3^{2} \cdot 7 \) |
\( 3^{8} \cdot 7^{4} \) |
$0.66607$ |
$(-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$3.448307718$ |
0.325834452 |
\( \frac{7189057}{3969} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -4\) , \( -1\bigr] \) |
${y}^2+{x}{y}={x}^{3}-4{x}-1$ |
567.1-a3 |
567.1-a |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
567.1 |
\( 3^{4} \cdot 7 \) |
\( 3^{20} \cdot 7^{4} \) |
$1.15367$ |
$(-2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$2.638508823$ |
$1.149435906$ |
2.292578873 |
\( \frac{7189057}{3969} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -36\) , \( 27\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-36{x}+27$ |
4032.1-c3 |
4032.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
4032.1 |
\( 2^{6} \cdot 3^{2} \cdot 7 \) |
\( 2^{18} \cdot 3^{8} \cdot 7^{4} \) |
$1.88394$ |
$(a), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.219160885$ |
1.843198006 |
\( \frac{7189057}{3969} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -20 a - 8\) , \( -17 a + 6\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-20a-8\right){x}-17a+6$ |
4032.7-c3 |
4032.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
4032.7 |
\( 2^{6} \cdot 3^{2} \cdot 7 \) |
\( 2^{18} \cdot 3^{8} \cdot 7^{4} \) |
$1.88394$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.219160885$ |
1.843198006 |
\( \frac{7189057}{3969} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 20 a - 28\) , \( 17 a - 11\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(20a-28\right){x}+17a-11$ |
7056.1-c3 |
7056.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7056.1 |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 7^{10} \) |
$2.16684$ |
$(a), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.651668904$ |
1.970461553 |
\( \frac{7189057}{3969} \) |
\( \bigl[a\) , \( -a\) , \( 0\) , \( -84 a + 56\) , \( 63 a - 154\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-84a+56\right){x}+63a-154$ |
7056.5-c3 |
7056.5-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7056.5 |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 7^{10} \) |
$2.16684$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.651668904$ |
1.970461553 |
\( \frac{7189057}{3969} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 84 a - 28\) , \( -63 a - 91\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(84a-28\right){x}-63a-91$ |
16128.5-i3 |
16128.5-i |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16128.5 |
\( 2^{8} \cdot 3^{2} \cdot 7 \) |
\( 2^{24} \cdot 3^{8} \cdot 7^{4} \) |
$2.66430$ |
$(a), (-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \) |
$0.746299208$ |
$0.862076929$ |
3.890719903 |
\( \frac{7189057}{3969} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 64\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-64{x}+64$ |
28224.1-d3 |
28224.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28224.1 |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 7^{10} \) |
$3.06438$ |
$(a), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.485887490$ |
$0.460799501$ |
2.070326753 |
\( \frac{7189057}{3969} \) |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( 140 a + 56\) , \( 35 a - 434\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(140a+56\right){x}+35a-434$ |
28224.7-d3 |
28224.7-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28224.7 |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 7^{10} \) |
$3.06438$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.485887490$ |
$0.460799501$ |
2.070326753 |
\( \frac{7189057}{3969} \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( -140 a + 195\) , \( 21 a - 118\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-140a+195\right){x}+21a-118$ |
36288.1-c3 |
36288.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.1 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{20} \cdot 7^{4} \) |
$3.26308$ |
$(a), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.406386961$ |
1.228798671 |
\( \frac{7189057}{3969} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -180 a - 72\) , \( 459 a - 162\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-180a-72\right){x}+459a-162$ |
36288.7-c3 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{20} \cdot 7^{4} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.406386961$ |
1.228798671 |
\( \frac{7189057}{3969} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 180 a - 253\) , \( -279 a + 44\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(180a-253\right){x}-279a+44$ |
39375.1-d3 |
39375.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
39375.1 |
\( 3^{2} \cdot 5^{4} \cdot 7 \) |
\( 3^{8} \cdot 5^{12} \cdot 7^{4} \) |
$3.33037$ |
$(-2a+1), (3), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.931482321$ |
$0.689661543$ |
8.055596601 |
\( \frac{7189057}{3969} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -100\) , \( -125\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-100{x}-125$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.