Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63.1-a3 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.448307718$ 0.325834452 \( \frac{7189057}{3969} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -4\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}-4{x}-1$
567.1-a3 567.1-a \(\Q(\sqrt{-7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.638508823$ $1.149435906$ 2.292578873 \( \frac{7189057}{3969} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -36\) , \( 27\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-36{x}+27$
4032.1-c3 4032.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.219160885$ 1.843198006 \( \frac{7189057}{3969} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -20 a - 8\) , \( -17 a + 6\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-20a-8\right){x}-17a+6$
4032.7-c3 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.219160885$ 1.843198006 \( \frac{7189057}{3969} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 20 a - 28\) , \( 17 a - 11\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(20a-28\right){x}+17a-11$
7056.1-c3 7056.1-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.651668904$ 1.970461553 \( \frac{7189057}{3969} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -84 a + 56\) , \( 63 a - 154\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-84a+56\right){x}+63a-154$
7056.5-c3 7056.5-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.651668904$ 1.970461553 \( \frac{7189057}{3969} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 84 a - 28\) , \( -63 a - 91\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(84a-28\right){x}-63a-91$
16128.5-i3 16128.5-i \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.746299208$ $0.862076929$ 3.890719903 \( \frac{7189057}{3969} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 64\bigr] \) ${y}^2={x}^{3}-{x}^{2}-64{x}+64$
28224.1-d3 28224.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.485887490$ $0.460799501$ 2.070326753 \( \frac{7189057}{3969} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 140 a + 56\) , \( 35 a - 434\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(140a+56\right){x}+35a-434$
28224.7-d3 28224.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.485887490$ $0.460799501$ 2.070326753 \( \frac{7189057}{3969} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -140 a + 195\) , \( 21 a - 118\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-140a+195\right){x}+21a-118$
36288.1-c3 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.406386961$ 1.228798671 \( \frac{7189057}{3969} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -180 a - 72\) , \( 459 a - 162\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-180a-72\right){x}+459a-162$
36288.7-c3 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.406386961$ 1.228798671 \( \frac{7189057}{3969} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 180 a - 253\) , \( -279 a + 44\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(180a-253\right){x}-279a+44$
39375.1-d3 39375.1-d \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 5^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.931482321$ $0.689661543$ 8.055596601 \( \frac{7189057}{3969} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -100\) , \( -125\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-100{x}-125$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.