Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63.1-a4 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $1.724153859$ 0.325834452 \( \frac{6570725617}{45927} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -39\) , \( 90\bigr] \) ${y}^2+{x}{y}={x}^{3}-39{x}+90$
567.1-a4 567.1-a \(\Q(\sqrt{-7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.319254411$ $0.574717953$ 2.292578873 \( \frac{6570725617}{45927} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -351\) , \( -2430\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-351{x}-2430$
4032.1-c4 4032.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.609580442$ 1.843198006 \( \frac{6570725617}{45927} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -195 a - 78\) , \( 1530 a - 540\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-195a-78\right){x}+1530a-540$
4032.7-c4 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.609580442$ 1.843198006 \( \frac{6570725617}{45927} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 195 a - 273\) , \( -1530 a + 990\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(195a-273\right){x}-1530a+990$
7056.1-c4 7056.1-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.325834452$ 1.970461553 \( \frac{6570725617}{45927} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -819 a + 546\) , \( -5670 a + 13860\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-819a+546\right){x}-5670a+13860$
7056.5-c4 7056.5-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.325834452$ 1.970461553 \( \frac{6570725617}{45927} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 819 a - 273\) , \( 5670 a + 8190\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(819a-273\right){x}+5670a+8190$
16128.5-i5 16128.5-i \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.492598417$ $0.431038464$ 3.890719903 \( \frac{6570725617}{45927} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -624\) , \( -5760\bigr] \) ${y}^2={x}^{3}-{x}^{2}-624{x}-5760$
28224.1-d5 28224.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.971774980$ $0.230399750$ 2.070326753 \( \frac{6570725617}{45927} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 1365 a + 546\) , \( -3150 a + 39060\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1365a+546\right){x}-3150a+39060$
28224.7-d5 28224.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.971774980$ $0.230399750$ 2.070326753 \( \frac{6570725617}{45927} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -1365 a + 1910\) , \( 3696 a + 38641\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-1365a+1910\right){x}+3696a+38641$
36288.1-c5 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.203193480$ 1.228798671 \( \frac{6570725617}{45927} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -1755 a - 702\) , \( -41310 a + 14580\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1755a-702\right){x}-41310a+14580$
36288.7-c5 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.203193480$ 1.228798671 \( \frac{6570725617}{45927} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 1755 a - 2458\) , \( 43065 a - 29188\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1755a-2458\right){x}+43065a-29188$
39375.1-d5 39375.1-d \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 5^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.965741160$ $0.344830771$ 8.055596601 \( \frac{6570725617}{45927} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -975\) , \( 11250\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-975{x}+11250$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.