Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1600.4-a3 |
1600.4-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
1600.4 |
\( 2^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{2} \) |
$1.49526$ |
$(a), (-a+1), (5)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.993777963$ |
1.132717564 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \) |
${y}^2={x}^{3}-2{x}+1$ |
6400.5-b3 |
6400.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
6400.5 |
\( 2^{8} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{2} \) |
$2.11462$ |
$(a), (-a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1$ |
$5.993777963$ |
1.132717564 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( -1\bigr] \) |
${y}^2={x}^{3}-2{x}-1$ |
12800.4-g3 |
12800.4-g |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
12800.4 |
\( 2^{9} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$2.51472$ |
$(a), (-a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$4.238241043$ |
3.203809084 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -2 a + 4\) , \( a + 2\bigr] \) |
${y}^2={x}^{3}+\left(-2a+4\right){x}+a+2$ |
12800.7-g3 |
12800.7-g |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
12800.7 |
\( 2^{9} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$2.51472$ |
$(a), (-a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$4.238241043$ |
3.203809084 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 2 a + 2\) , \( -a + 3\bigr] \) |
${y}^2={x}^{3}+\left(2a+2\right){x}-a+3$ |
25600.5-c3 |
25600.5-c |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
25600.5 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$2.99053$ |
$(a), (-a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.238241043$ |
1.601904542 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -2 a + 4\) , \( -a - 2\bigr] \) |
${y}^2={x}^{3}+\left(-2a+4\right){x}-a-2$ |
25600.7-c3 |
25600.7-c |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
25600.7 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$2.99053$ |
$(a), (-a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.238241043$ |
1.601904542 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 2 a + 2\) , \( a - 3\bigr] \) |
${y}^2={x}^{3}+\left(2a+2\right){x}+a-3$ |
40000.4-e3 |
40000.4-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
40000.4 |
\( 2^{6} \cdot 5^{4} \) |
\( 2^{8} \cdot 5^{14} \) |
$3.34351$ |
$(a), (-a+1), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$3.156731320$ |
$1.198755592$ |
5.721096022 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -50\) , \( 125\bigr] \) |
${y}^2={x}^{3}-50{x}+125$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.