Learn more

Refine search


Results (13 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
448.4-b4 448.4-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $1.598934821$ 1.208681114 \( \frac{3543122}{49} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -40\) , \( -84\bigr] \) ${y}^2={x}^{3}-{x}^{2}-40{x}-84$
1792.5-a4 1792.5-a \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 7 \) $1$ $\Z/2\Z$ $0.119959949$ $1.598934821$ 2.319893204 \( \frac{3543122}{49} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -40\) , \( 84\bigr] \) ${y}^2={x}^{3}+{x}^{2}-40{x}+84$
3584.4-b4 3584.4-b \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $1.130617655$ 1.709333224 \( \frac{3543122}{49} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -40 a + 80\) , \( -84 a - 168\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-40a+80\right){x}-84a-168$
3584.7-b4 3584.7-b \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $1.130617655$ 1.709333224 \( \frac{3543122}{49} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 40 a + 40\) , \( 84 a - 252\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(40a+40\right){x}+84a-252$
6272.4-d4 6272.4-d \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.782382402$ $0.604340557$ 3.257043758 \( \frac{3543122}{49} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a + 282\) , \( 1458 a - 588\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a+282\right){x}+1458a-588$
6272.5-d4 6272.5-d \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.782382402$ $0.604340557$ 3.257043758 \( \frac{3543122}{49} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a + 282\) , \( -1458 a + 588\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+282\right){x}-1458a+588$
7168.5-g4 7168.5-g \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 7 \) $1$ $\Z/4\Z$ $1.075549531$ $1.130617655$ 3.676945099 \( \frac{3543122}{49} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -40 a + 80\) , \( 84 a + 168\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-40a+80\right){x}+84a+168$
7168.7-g4 7168.7-g \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 7 \) $1$ $\Z/4\Z$ $1.075549531$ $1.130617655$ 3.676945099 \( \frac{3543122}{49} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 40 a + 40\) , \( -84 a + 252\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(40a+40\right){x}-84a+252$
25088.4-j4 25088.4-j \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 7^{2} \) $1$ $\Z/2\Z$ $3.812635761$ $0.427333306$ 4.926438062 \( \frac{3543122}{49} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 282 a - 565\) , \( 3221 a - 4091\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(282a-565\right){x}+3221a-4091$
25088.7-j4 25088.7-j \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 7^{2} \) $1$ $\Z/2\Z$ $3.812635761$ $0.427333306$ 4.926438062 \( \frac{3543122}{49} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -282 a - 283\) , \( -3221 a - 870\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-282a-283\right){x}-3221a-870$
28672.7-d4 28672.7-d \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.688987630$ $0.799467410$ 4.082894903 \( \frac{3543122}{49} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -161\) , \( 833\bigr] \) ${y}^2={x}^{3}-{x}^{2}-161{x}+833$
28672.7-p4 28672.7-p \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.799467410$ 2.417362229 \( \frac{3543122}{49} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -161\) , \( -833\bigr] \) ${y}^2={x}^{3}+{x}^{2}-161{x}-833$
36288.4-f4 36288.4-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.532978273$ 1.611574819 \( \frac{3543122}{49} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -363\) , \( 2630\bigr] \) ${y}^2={x}^{3}-363{x}+2630$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.