Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63.1-a6 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.896615437$ 0.325834452 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[1\) , \( a\) , \( a\) , \( -2 a + 1\) , \( 0\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-2a+1\right){x}$
567.1-a6 567.1-a \(\Q(\sqrt{-7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.659627205$ $2.298871812$ 2.292578873 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -18 a + 15\) , \( -10 a + 46\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-18a+15\right){x}-10a+46$
4032.1-c6 4032.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -6 a + 24\) , \( -21 a - 18\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-6a+24\right){x}-21a-18$
4032.7-c6 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -13 a - 10\) , \( 16 a + 13\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-13a-10\right){x}+16a+13$
7056.1-c6 7056.1-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.303337809$ 1.970461553 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 20 a + 62\) , \( 168 a - 229\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(20a+62\right){x}+168a-229$
7056.5-c6 7056.5-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.303337809$ 1.970461553 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -7 a - 74\) , \( -77 a - 197\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-7a-74\right){x}-77a-197$
16128.5-i4 16128.5-i \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.746299208$ $1.724153859$ 3.890719903 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -31 a + 26\) , \( -22 a + 88\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-31a+26\right){x}-22a+88$
28224.1-d4 28224.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.485887490$ $0.921599003$ 2.070326753 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 40 a - 162\) , \( 275 a - 795\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(40a-162\right){x}+275a-795$
28224.7-d4 28224.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.371471872$ $0.921599003$ 2.070326753 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 86 a + 58\) , \( 274 a - 858\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(86a+58\right){x}+274a-858$
36288.1-c4 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -51 a + 210\) , \( 672 a + 64\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-51a+210\right){x}+672a+64$
36288.7-c4 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -111 a - 76\) , \( -833 a + 90\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-111a-76\right){x}-833a+90$
39375.1-d4 39375.1-d \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 5^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.725929285$ $1.379323087$ 8.055596601 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -51 a + 41\) , \( 49 a - 246\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-51a+41\right){x}+49a-246$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.