Learn more

Refine search


Results (7 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1600.4-a4 1600.4-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $1.498444490$ 1.132717564 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( -426\bigr] \) ${y}^2={x}^{3}-107{x}-426$
6400.5-b4 6400.5-b \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 5^{2} \) $0$ $\Z/4\Z$ $1$ $1.498444490$ 1.132717564 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( 426\bigr] \) ${y}^2={x}^{3}-107{x}+426$
12800.4-g4 12800.4-g \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $1.059560260$ 3.203809084 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107 a + 214\) , \( -426 a - 852\bigr] \) ${y}^2={x}^{3}+\left(-107a+214\right){x}-426a-852$
12800.7-g4 12800.7-g \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $1.059560260$ 3.203809084 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 107 a + 107\) , \( 426 a - 1278\bigr] \) ${y}^2={x}^{3}+\left(107a+107\right){x}+426a-1278$
25600.5-c4 25600.5-c \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $1.059560260$ 1.601904542 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107 a + 214\) , \( 426 a + 852\bigr] \) ${y}^2={x}^{3}+\left(-107a+214\right){x}+426a+852$
25600.7-c4 25600.7-c \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $1.059560260$ 1.601904542 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 107 a + 107\) , \( -426 a + 1278\bigr] \) ${y}^2={x}^{3}+\left(107a+107\right){x}-426a+1278$
40000.4-e4 40000.4-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 5^{4} \) $1$ $\Z/2\Z$ $3.156731320$ $0.299688898$ 5.721096022 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2675\) , \( -53250\bigr] \) ${y}^2={x}^{3}-2675{x}-53250$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.