Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
225.1-a8 |
225.1-a |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
225.1 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{8} \cdot 5^{2} \) |
$0.91566$ |
$(3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.689178076$ |
$0.558925428$ |
0.582366377 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -2160\) , \( -39540\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-2160{x}-39540$ |
2025.1-a8 |
2025.1-a |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
2025.1 |
\( 3^{4} \cdot 5^{2} \) |
\( 3^{20} \cdot 5^{2} \) |
$1.58597$ |
$(3), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.186308476$ |
2.253375518 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -19440\) , \( 1048135\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-19440{x}+1048135$ |
5625.1-b8 |
5625.1-b |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
5625.1 |
\( 3^{2} \cdot 5^{4} \) |
\( 3^{8} \cdot 5^{14} \) |
$2.04747$ |
$(3), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.111785085$ |
1.352025311 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -54001\) , \( -4834477\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-54001{x}-4834477$ |
14400.1-d8 |
14400.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
14400.1 |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{2} \) |
$2.58987$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$15.27600809$ |
$0.197609980$ |
4.563832806 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[a\) , \( a\) , \( 0\) , \( -10800 a - 4321\) , \( -661377 a + 241559\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-10800a-4321\right){x}-661377a+241559$ |
14400.7-d8 |
14400.7-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
14400.7 |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{2} \) |
$2.58987$ |
$(-a+1), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$15.27600809$ |
$0.197609980$ |
4.563832806 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 10802 a - 15122\) , \( 657057 a - 441419\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(10802a-15122\right){x}+657057a-441419$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.