Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63.1-a2 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.896615437$ 0.325834452 \( \frac{103823}{63} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}$
567.1-a2 567.1-a \(\Q(\sqrt{-7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.319254411$ $2.298871812$ 2.292578873 \( \frac{103823}{63} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 9\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+9{x}$
4032.1-c2 4032.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( \frac{103823}{63} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 5 a + 2\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(5a+2\right){x}$
4032.7-c2 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -5 a + 7\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-5a+7\right){x}$
7056.1-c2 7056.1-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.303337809$ 1.970461553 \( \frac{103823}{63} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( 21 a - 14\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(21a-14\right){x}$
7056.5-c2 7056.5-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.303337809$ 1.970461553 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -21 a + 7\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-21a+7\right){x}$
16128.5-i2 16128.5-i \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.373149604$ $1.724153859$ 3.890719903 \( \frac{103823}{63} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 16\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+16{x}$
28224.1-d2 28224.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.742943745$ $0.921599003$ 2.070326753 \( \frac{103823}{63} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -35 a - 14\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-35a-14\right){x}$
28224.7-d2 28224.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.742943745$ $0.921599003$ 2.070326753 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 35 a - 50\) , \( -14 a - 69\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(35a-50\right){x}-14a-69$
36288.1-c2 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{103823}{63} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 45 a + 18\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(45a+18\right){x}$
36288.7-c2 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -45 a + 62\) , \( -45 a + 62\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-45a+62\right){x}-45a+62$
39375.1-d2 39375.1-d \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 5^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.862964642$ $1.379323087$ 8.055596601 \( \frac{103823}{63} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 25\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+25{x}$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.