Learn more

Refine search


Results (24 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
28.2-a1 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.875417135$ 0.330876576 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$
896.2-b1 896.2-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.309506696$ 2.105685636 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -853 a - 340\) , \( -14854 a + 5243\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-853a-340\right){x}-14854a+5243$
896.7-b1 896.7-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.309506696$ 2.105685636 \( -\frac{548347731625}{1835008} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 851 a - 1193\) , \( 14853 a - 9611\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(851a-1193\right){x}+14853a-9611$
1568.2-b1 1568.2-b \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.165438288$ 2.251072633 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -3581 a + 2388\) , \( 55046 a - 134557\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-3581a+2388\right){x}+55046a-134557$
1568.5-b1 1568.5-b \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.165438288$ 2.251072633 \( -\frac{548347731625}{1835008} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 3579 a - 1193\) , \( -55047 a - 79511\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(3579a-1193\right){x}-55047a-79511$
1792.5-b1 1792.5-b \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.507207167$ $0.218854283$ 2.320905398 \( -\frac{548347731625}{1835008} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -2728\) , \( 55920\bigr] \) ${y}^2={x}^{3}-{x}^{2}-2728{x}+55920$
2268.2-b1 2268.2-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $0.291805711$ 3.970518914 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -1535\) , \( 23591\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-1535{x}+23591$
6272.2-b1 6272.2-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.354422918$ $0.116982535$ 2.601420732 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 5967 a + 2388\) , \( 30581 a - 379207\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5967a+2388\right){x}+30581a-379207$
6272.7-b1 6272.7-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.354422918$ $0.116982535$ 2.601420732 \( -\frac{548347731625}{1835008} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -5969 a + 8354\) , \( -28195 a - 336690\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-5969a+8354\right){x}-28195a-336690$
7168.5-h1 7168.5-h \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.154753348$ 2.105685636 \( -\frac{548347731625}{1835008} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -2728 a + 5456\) , \( 55920 a + 111840\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-2728a+5456\right){x}+55920a+111840$
7168.7-h1 7168.7-h \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.154753348$ 2.105685636 \( -\frac{548347731625}{1835008} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2728 a + 2728\) , \( -55920 a + 167760\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2728a+2728\right){x}-55920a+167760$
17500.2-f1 17500.2-f \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.208472088$ $0.175083427$ 8.939617596 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -4263\) , \( -109219\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-4263{x}-109219$
23548.4-c1 23548.4-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.162560880$ 2.211920557 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( -1364 a + 5285\) , \( -87375 a - 28834\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-1364a+5285\right){x}-87375a-28834$
23548.6-e1 23548.6-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.162560880$ 2.211920557 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 1364 a + 3921\) , \( 87375 a - 116209\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1364a+3921\right){x}+87375a-116209$
23716.4-g1 23716.4-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.099763041$ 2.714895745 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -9548 a + 1193\) , \( -415905 a + 422021\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-9548a+1193\right){x}-415905a+422021$
23716.6-e1 23716.6-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.099763041$ 2.714895745 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( 9550 a - 8356\) , \( 406356 a + 14472\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(9550a-8356\right){x}+406356a+14472$
27104.13-c1 27104.13-c \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.166277711$ $0.131974098$ 3.325124285 \( -\frac{548347731625}{1835008} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 2217 a - 8014\) , \( 107002 a - 256732\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2217a-8014\right){x}+107002a-256732$
27104.15-j1 27104.15-j \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.065481787$ $0.131974098$ 7.653290664 \( -\frac{548347731625}{1835008} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 853 a + 6990\) , \( -180013 a + 149453\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(853a+6990\right){x}-180013a+149453$
27104.4-j1 27104.4-j \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.065481787$ $0.131974098$ 7.653290664 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( a\) , \( a\) , \( -853 a + 7844\) , \( 187856 a - 36697\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-853a+7844\right){x}+187856a-36697$
27104.6-c1 27104.6-c \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.166277711$ $0.131974098$ 3.325124285 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -2217 a - 5797\) , \( -107002 a - 149730\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-2217a-5797\right){x}-107002a-149730$
28672.7-e1 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $12.63051067$ $0.109427141$ 4.179140127 \( -\frac{548347731625}{1835008} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -10913\) , \( 436447\bigr] \) ${y}^2={x}^{3}+{x}^{2}-10913{x}+436447$
28672.7-o1 28672.7-o \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.109427141$ 1.488944592 \( -\frac{548347731625}{1835008} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -10913\) , \( -436447\bigr] \) ${y}^2={x}^{3}-{x}^{2}-10913{x}-436447$
38332.4-c1 38332.4-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.143917690$ 1.958247865 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 4092 a + 1193\) , \( -3495 a + 198341\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(4092a+1193\right){x}-3495a+198341$
38332.6-c1 38332.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.143917690$ 1.958247865 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -4092 a + 5285\) , \( 3495 a + 194846\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-4092a+5285\right){x}+3495a+194846$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.