Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
28.2-a1 |
28.2-a |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28.2 |
\( 2^{2} \cdot 7 \) |
\( 2^{36} \cdot 7^{2} \) |
$0.54385$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.2 |
$1$ |
\( 2^{3} \) |
$1$ |
$0.875417135$ |
0.330876576 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$ |
896.2-b1 |
896.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
896.2 |
\( 2^{7} \cdot 7 \) |
\( 2^{54} \cdot 7^{2} \) |
$1.29349$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$1$ |
$0.309506696$ |
2.105685636 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -853 a - 340\) , \( -14854 a + 5243\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-853a-340\right){x}-14854a+5243$ |
896.7-b1 |
896.7-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
896.7 |
\( 2^{7} \cdot 7 \) |
\( 2^{54} \cdot 7^{2} \) |
$1.29349$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$1$ |
$0.309506696$ |
2.105685636 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 851 a - 1193\) , \( 14853 a - 9611\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(851a-1193\right){x}+14853a-9611$ |
1568.2-b1 |
1568.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
1568.2 |
\( 2^{5} \cdot 7^{2} \) |
\( 2^{48} \cdot 7^{8} \) |
$1.48773$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$1$ |
$0.165438288$ |
2.251072633 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a\) , \( -a\) , \( a\) , \( -3581 a + 2388\) , \( 55046 a - 134557\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-3581a+2388\right){x}+55046a-134557$ |
1568.5-b1 |
1568.5-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
1568.5 |
\( 2^{5} \cdot 7^{2} \) |
\( 2^{48} \cdot 7^{8} \) |
$1.48773$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$1$ |
$0.165438288$ |
2.251072633 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 3579 a - 1193\) , \( -55047 a - 79511\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(3579a-1193\right){x}-55047a-79511$ |
1792.5-b1 |
1792.5-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
1792.5 |
\( 2^{8} \cdot 7 \) |
\( 2^{60} \cdot 7^{2} \) |
$1.53823$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$3.507207167$ |
$0.218854283$ |
2.320905398 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -2728\) , \( 55920\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-2728{x}+55920$ |
2268.2-b1 |
2268.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
2268.2 |
\( 2^{2} \cdot 3^{4} \cdot 7 \) |
\( 2^{36} \cdot 3^{12} \cdot 7^{2} \) |
$1.63154$ |
$(a), (-a+1), (-2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{5} \cdot 3^{4} \) |
$1$ |
$0.291805711$ |
3.970518914 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -1535\) , \( 23591\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-1535{x}+23591$ |
6272.2-b1 |
6272.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
6272.2 |
\( 2^{7} \cdot 7^{2} \) |
\( 2^{54} \cdot 7^{8} \) |
$2.10397$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$7.354422918$ |
$0.116982535$ |
2.601420732 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 5967 a + 2388\) , \( 30581 a - 379207\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5967a+2388\right){x}+30581a-379207$ |
6272.7-b1 |
6272.7-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
6272.7 |
\( 2^{7} \cdot 7^{2} \) |
\( 2^{54} \cdot 7^{8} \) |
$2.10397$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$7.354422918$ |
$0.116982535$ |
2.601420732 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -5969 a + 8354\) , \( -28195 a - 336690\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-5969a+8354\right){x}-28195a-336690$ |
7168.5-h1 |
7168.5-h |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7168.5 |
\( 2^{10} \cdot 7 \) |
\( 2^{66} \cdot 7^{2} \) |
$2.17539$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$9$ |
\( 2^{5} \) |
$1$ |
$0.154753348$ |
2.105685636 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -2728 a + 5456\) , \( 55920 a + 111840\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-2728a+5456\right){x}+55920a+111840$ |
7168.7-h1 |
7168.7-h |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7168.7 |
\( 2^{10} \cdot 7 \) |
\( 2^{66} \cdot 7^{2} \) |
$2.17539$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$9$ |
\( 2^{5} \) |
$1$ |
$0.154753348$ |
2.105685636 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2728 a + 2728\) , \( -55920 a + 167760\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2728a+2728\right){x}-55920a+167760$ |
17500.2-f1 |
17500.2-f |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
17500.2 |
\( 2^{2} \cdot 5^{4} \cdot 7 \) |
\( 2^{36} \cdot 5^{12} \cdot 7^{2} \) |
$2.71924$ |
$(a), (-a+1), (-2a+1), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \cdot 3^{4} \) |
$0.208472088$ |
$0.175083427$ |
8.939617596 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -4263\) , \( -109219\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-4263{x}-109219$ |
23548.4-c1 |
23548.4-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23548.4 |
\( 2^{2} \cdot 7 \cdot 29^{2} \) |
\( 2^{36} \cdot 7^{2} \cdot 29^{6} \) |
$2.92871$ |
$(a), (-a+1), (-2a+1), (-4a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$1$ |
$0.162560880$ |
2.211920557 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( -1364 a + 5285\) , \( -87375 a - 28834\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-1364a+5285\right){x}-87375a-28834$ |
23548.6-e1 |
23548.6-e |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23548.6 |
\( 2^{2} \cdot 7 \cdot 29^{2} \) |
\( 2^{36} \cdot 7^{2} \cdot 29^{6} \) |
$2.92871$ |
$(a), (-a+1), (-2a+1), (4a-3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$1$ |
$0.162560880$ |
2.211920557 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( a - 1\) , \( 1\) , \( 1364 a + 3921\) , \( 87375 a - 116209\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1364a+3921\right){x}+87375a-116209$ |
23716.4-g1 |
23716.4-g |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23716.4 |
\( 2^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 2^{36} \cdot 7^{8} \cdot 11^{6} \) |
$2.93392$ |
$(a), (-a+1), (-2a+1), (-2a+3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \cdot 3^{2} \) |
$1$ |
$0.099763041$ |
2.714895745 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( -9548 a + 1193\) , \( -415905 a + 422021\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-9548a+1193\right){x}-415905a+422021$ |
23716.6-e1 |
23716.6-e |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23716.6 |
\( 2^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 2^{36} \cdot 7^{8} \cdot 11^{6} \) |
$2.93392$ |
$(a), (-a+1), (-2a+1), (2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \cdot 3^{2} \) |
$1$ |
$0.099763041$ |
2.714895745 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( -a - 1\) , \( 0\) , \( 9550 a - 8356\) , \( 406356 a + 14472\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(9550a-8356\right){x}+406356a+14472$ |
27104.13-c1 |
27104.13-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.13 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{48} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (-2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$4.166277711$ |
$0.131974098$ |
3.325124285 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 2217 a - 8014\) , \( 107002 a - 256732\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2217a-8014\right){x}+107002a-256732$ |
27104.15-j1 |
27104.15-j |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.15 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{48} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \cdot 3^{2} \) |
$1.065481787$ |
$0.131974098$ |
7.653290664 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 853 a + 6990\) , \( -180013 a + 149453\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(853a+6990\right){x}-180013a+149453$ |
27104.4-j1 |
27104.4-j |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.4 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{48} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (-2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \cdot 3^{2} \) |
$1.065481787$ |
$0.131974098$ |
7.653290664 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( -853 a + 7844\) , \( 187856 a - 36697\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-853a+7844\right){x}+187856a-36697$ |
27104.6-c1 |
27104.6-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.6 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{48} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$4.166277711$ |
$0.131974098$ |
3.325124285 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -2217 a - 5797\) , \( -107002 a - 149730\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-2217a-5797\right){x}-107002a-149730$ |
28672.7-e1 |
28672.7-e |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.7 |
\( 2^{12} \cdot 7 \) |
\( 2^{72} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$12.63051067$ |
$0.109427141$ |
4.179140127 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -10913\) , \( 436447\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-10913{x}+436447$ |
28672.7-o1 |
28672.7-o |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.7 |
\( 2^{12} \cdot 7 \) |
\( 2^{72} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$9$ |
\( 2^{5} \) |
$1$ |
$0.109427141$ |
1.488944592 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -10913\) , \( -436447\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-10913{x}-436447$ |
38332.4-c1 |
38332.4-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
38332.4 |
\( 2^{2} \cdot 7 \cdot 37^{2} \) |
\( 2^{36} \cdot 7^{2} \cdot 37^{6} \) |
$3.30809$ |
$(a), (-a+1), (-2a+1), (-4a+5)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$1$ |
$0.143917690$ |
1.958247865 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 4092 a + 1193\) , \( -3495 a + 198341\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(4092a+1193\right){x}-3495a+198341$ |
38332.6-c1 |
38332.6-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
38332.6 |
\( 2^{2} \cdot 7 \cdot 37^{2} \) |
\( 2^{36} \cdot 7^{2} \cdot 37^{6} \) |
$3.30809$ |
$(a), (-a+1), (-2a+1), (4a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$1$ |
$0.143917690$ |
1.958247865 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( -4092 a + 5285\) , \( 3495 a + 194846\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-4092a+5285\right){x}+3495a+194846$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.