Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
5324.6-a1 |
5324.6-a |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
5324.6 |
\( 2^{2} \cdot 11^{3} \) |
\( 2^{13} \cdot 11^{11} \) |
$2.01952$ |
$(a), (-a+1), (-2a+3), (2a+1)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$0.804718677$ |
$0.722336016$ |
1.757617297 |
\( -\frac{531165637}{1362944} a + \frac{64260511}{681472} \) |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( -45 a + 7\) , \( -280 a + 120\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-45a+7\right){x}-280a+120$ |
42592.18-c2 |
42592.18-c |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
42592.18 |
\( 2^{5} \cdot 11^{3} \) |
\( 2^{25} \cdot 11^{5} \) |
$3.39641$ |
$(a), (-a+1), (-2a+3), (2a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2^{2} \) |
$0.489938282$ |
$1.197858769$ |
3.549097701 |
\( -\frac{531165637}{1362944} a + \frac{64260511}{681472} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 17 a - 6\) , \( -14 a - 68\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(17a-6\right){x}-14a-68$ |
42592.6-d2 |
42592.6-d |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
42592.6 |
\( 2^{5} \cdot 11^{3} \) |
\( 2^{25} \cdot 11^{5} \) |
$3.39641$ |
$(a), (-a+1), (-2a+3), (2a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \) |
$0.034494406$ |
$1.197858769$ |
7.496292234 |
\( -\frac{531165637}{1362944} a + \frac{64260511}{681472} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( -17 a + 12\) , \( 52 a - 49\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-17a+12\right){x}+52a-49$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.