Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63.1-a1 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.862076929$ 0.325834452 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -34\) , \( -217\bigr] \) ${y}^2+{x}{y}={x}^{3}-34{x}-217$
567.1-a1 567.1-a \(\Q(\sqrt{-7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.638508823$ $0.287358976$ 2.292578873 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -306\) , \( 5859\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-306{x}+5859$
4032.1-c1 4032.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.304790221$ 1.843198006 \( -\frac{4354703137}{17294403} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -170 a - 68\) , \( -3689 a + 1302\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-170a-68\right){x}-3689a+1302$
4032.7-c1 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.304790221$ 1.843198006 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 170 a - 238\) , \( 3689 a - 2387\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(170a-238\right){x}+3689a-2387$
7056.1-c1 7056.1-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.162917226$ 1.970461553 \( -\frac{4354703137}{17294403} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -714 a + 476\) , \( 13671 a - 33418\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-714a+476\right){x}+13671a-33418$
7056.5-c1 7056.5-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.162917226$ 1.970461553 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 714 a - 238\) , \( -13671 a - 19747\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(714a-238\right){x}-13671a-19747$
16128.5-i1 16128.5-i \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.746299208$ $0.215519232$ 3.890719903 \( -\frac{4354703137}{17294403} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -544\) , \( 13888\bigr] \) ${y}^2={x}^{3}-{x}^{2}-544{x}+13888$
28224.1-d1 28224.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.943549961$ $0.115199875$ 2.070326753 \( -\frac{4354703137}{17294403} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 1190 a + 476\) , \( 7595 a - 94178\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1190a+476\right){x}+7595a-94178$
28224.7-d1 28224.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.943549961$ $0.115199875$ 2.070326753 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -1190 a + 1665\) , \( -7119 a - 84202\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-1190a+1665\right){x}-7119a-84202$
36288.1-c1 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.101596740$ 1.228798671 \( -\frac{4354703137}{17294403} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -1530 a - 612\) , \( 99603 a - 35154\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1530a-612\right){x}+99603a-35154$
36288.7-c1 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.101596740$ 1.228798671 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 1530 a - 2143\) , \( -98073 a + 62306\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1530a-2143\right){x}-98073a+62306$
39375.1-d1 39375.1-d \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 5^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.931482321$ $0.172415385$ 8.055596601 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -850\) , \( -27125\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-850{x}-27125$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.